

MASCOT 対応 Version: 3.1 最終更新日: 2025/3/1

目次

1.はじめに: MASCOT Server でできる事	1
1-1. MASCOT Server とは	1
1-2. MASCOT Server でできる事・まとめ	1
1-3. 検索手法とマニュアルで対応しているページ	3
0 Magazat Saman (03/7=/	4
2. Mascot Server のシステム	<mark></mark>
2-1. MASCOT Server は WEB アプリケーションである	4
2-2. MASCOT Server のインストール先と各フォルダダ	5
2-3.3 種類の MASCOT 検索	6
3. MASCOT Server の入力データ	<mark>7</mark>
3-1. MASCOT Server が読み込み可能なファイルフォーマット	7
3-1-1. PMF で対応するファイルフォーマット	
3-1-2. MIS で対応するファイルフォーマット:どのような情報が抜き出されているか	9
3-1-3. MIS で対応するファイルフォーマット:mgf	9
3-2. raw データ変換プログラム	11
4. MASCOT Server 検索方法	
4-1. 「URL」と MASCOT Server [イットワーク上で MASCOT を指定 9 る方法]	
4-2. 友侠消のファイルを WEB フラフリ で快来	
4-2-1. FMF :) イスト) ニタを WEB ノブブリ C (灰糸	
4-3 Daemon を使って raw データを直接検索	
4-3-1 Daemon + ProteoWizard	
4-3-2 Daemon + Distiller	
4-4. 質量分析装置メーカーのソフトウェアから検索	
	10
5. 快緊ハフメーターとテータハース	18
5-1. PMF: 検索パラメーター 一覧	19
5-2. Sequence Query: 検索パラメーター 一覧	22
5-3. MIS: 検索パラメーター 一覧	27
5-4. パラメーターの中でカスタマイズ可能な項目	
5-5. Database	
5-6. Search form defaults	35
6. 検索結果画面:PMF	<mark>36</mark>
6-1. 表示例で使用している検索について	
6-2. 表示内容の詳細 : summary 画面	36

6-2-1. 展開しない状態での画面概要	
6-2-2. ヘッダー部分	
6-2-3. Score Histogram	
6-2-4. 表示内容の変更 [Format As]	
6-2-5. 再検索:Research all, search unmatched	
6-2-6. 同定タンパク質の情報	
6-2-7. Search parameters	41
6-3. Protein View	
6-4. 結果のファイル出力	
7. 検索結果画面:MIS	47
7-1、表示例で使用している検索について	47
7-2. 表示内容の詳細: summary 画面	
7-2-1 展開/ない状態での画面概要	47
727. 派用 ϕ	
7-2-3 再始索と結果ファイル出力: Re-search ボタン Export ボタン	49
7-2-4 Search narameters	49
7-2-5 Score Distribution	
7-2-6. Modification statistics for all protein families	
7-2-7 Legend (凡例)	
7-2-8 表示内容の切り替え [スコア足切り refinement の再実行など]	
7-2-9. Sensitivity and FDR \sim	53
7-2-10. machine learning quality report	
7-2-11. 同定タンパク質とアサインペプチド	
7-2-12. Report Builder タブ (タンパク質ベースの検索結果ファイル出力)	60
7-2-13. Unassigned タブ	62
7-3. Protein View	62
7-4. Peptide View	
- 7-5. Export 機能によるペプチドベースの検索結果ファイル出力	71
- P DMF・々 [、] パク質同定	74
	······································
8-1. PMF タンハク貨同定のまとの	
8-3. 配列から計算される理論ビージ値	
8-4. 问疋タノハソ賞: イツナノクと人」ア、同疋基準値、期待値	76
8-5. protein inference: ユニーク/シェア ベフナド、タンパク質のクルーブ化	77
9. MIS : ペプチド同定とタンパク質同定	79
9-1. MIS ペプチド同定とタンパク質同定のまとめ	79
9-2. 入力データの準備	79
9-3. ペプチド配列から行う理論値計算、ペプチドのフィルターリング	

9-4. 同定ペプチド : マッチングとスコア、同定基準値、期待値、外挿的な評価	
9-4-1. refinement を実施しない場合のスコアや同定基準値	81
9-4-2 refinement を実施する場合のスコアや同定基準値	
9-5. 同定ペプチドから導き出される同定タンパク質	
9-5-1. 同定タンパク質=ユニークな同定ペプチドが1つ以上アサインされている	
9-5-2. 1 Hit wonders : 同定タンパク質の Sensitivity と Specificity	83
9-6. protein inference:ユニーク/シェア ペプチド、タンパク質のグループ化	
10. MASCOT 検索のオプション [MIS]	8 <mark>6</mark>
10-1.Spectral Library	
10-1-1. Spectral Library 概要	86
10-1-2. Spectral Library 検索方法	
10-1-3. Spectral Library の検索結果	
10-1-4. Spectral Library をローカルの MASCOT Server にセットする方法	
10-1-5. Spectral Library 補足説明資料へのリンク	
10-2. Quantitation	90
10-2-1. Quantitation 概要	
10-2-2. Quantitation 検索方法	
10-2-3. Quantitation 検索結果	
10-2-4. Quantitation 設定の作成	
10-2-5. Quantitation 補足説明へのリンク	
10-3. Crosslink	
10-3-1. Crosslink 検索 概要	94
10-3-2. Crosslink 検索を行う方法	
10-3-3. Crosslink 検索に際し注意するべき MASCOT 設定値	
10-3-4. Crosslink 検索結果	
10-3-5. Crosslinking 設定の作成	
10-3-6. Crosslink 補足説明へのリンク	
10-4. Error Tolerant Search	100
10-4-1. Error Tolerant Search 概要	100
10-4-2. Error Tolerant Search を実行する方法	101
10-4-3. Error Tolerant Search <i>検索結果</i>	101
11. 機械学習による結果の精査 (refinement)	104
11-1. 機械学習で行う結果の精査(refinement)の概要	
11-2. refinement 実施の必要要件とデータの流れ	
11-2-1. refinement 計算が実施可能な条件	105
11-2-2. refinement 計算のワークフロー	106
11-2-3. decoy データベース	107
11-2-4. FDR (q-value)	107
11-4-5. Protein FDR	109

11-3. features	
11-4. 保持時間予測と MS2 スペクトル予測	
11-4-1. MS ² Rescore	
11-4-2. DeepLC	
11-4- 3 . MS ² PIP	115
11-5. refinement に関するレポート	
12. MASCOT Server 管理 – データベースと検索ログ	117
12-1. 現在利用可能なデータベースに関する情報 : Database Status	
12-2. 検索ログ:Search log	
13. MASCOT Server のカスタマイズ	
	104
13-1. JASYAA Configuration Editor C	
13-2. Amino Acids	
13-3. Modifications	
13-4. Symbols	
13-5. Linkers	
13-6. Enzymes	
13-7. Instruments	
13-8. Quantitation	141
13-9. Crosslinking	
13-10. Configuration Options	
13-11. Database manager	
13-12. Security	

1.はじめに: MASCOT Server でできる事

1-1. MASCOT Server とは

MASCOT Server は、質量分析装置のデータをもとにペプチド配列あるいはタンパク質を同定する ソフトウェアです。

入力データ側は質量分析装置から得られたスペクトル情報ですが、すべてを利用するのでなく抜粋された 情報(ピークリスト)を利用しています。一方参照するデータベースについては、配列データベース (アミノ酸配列・塩基配列)から計算された理論スペクトル、あるいは配列情報と結びついている過去の 実測スペクトルどちらに対しても検索を行うことができます。

ピークリストと理論値または実測スペクトルとの照合に対してマッチング度合いを示すスコアが提示され、 それが別途計算された同定基準スコアを超える時、当該ペプチド/タンパク質を「同定」したとみなします。 すなわち、入力データであるスペクトルデータが、どのようなペプチド/タンパク質由来のスペクトルである かを同定します。MASCOTの同定基準スコアはデフォルトでは95%信頼度を元に算出されていますが、 現在論文などでは1% FDR(詳細は11章をご参照ください)を満たすよう求められていて、FDRの基準を 満たすように同定基準を調整しながら、スコア以外の要素を組み込んだ再スコアリングを行って同定ペプチ ド数を最大限増やす"refinement"を実施する事が多くなっています。

1-2. MASCOT Server でできる事・まとめ

[定性]

- ・ ペプチド配列の同定
- ・ タンパク質の同定
- ・ 翻訳後修飾の同定と、候補残基が複数あるケースにおける、部位別の同定確率の提示
- ・ 設定パラメーター値以外の切断パターン、修飾、アミノ酸置換の提示
- ・ クロスリンクペプチドの同定(ペプチドの組み合わせとリンカーが付いている残基の位置)

[定量]

- ・ タンパク質の相対量(比)または定量指標の提示
 - フラグメントピークのピーク強度を使った定量。[MASCOT Server のみで実施可能]
 - Spectral Counting(emPAI) 定量指標。[MASCOT Server のみで実施可能]

* Extracted Ion Chromatograms (XICs)のピーク強度を使った定量については、MASCOT Distiller 定量モジュールと 一緒に計算を行う必要があります。

			_									
	†Family	MD	8	Accession	Score	Mass	Matches	Match(sig)	Sequences	Seq(sig)	emPAI	Description
	1	1 cR	AP	dame TDV1_DOV/INI	1600	28266	47	47	7	7	2.86	sp TRY1_BOVIN
	2	1 Sv	vissProt	#2::CP2CT_MOUSE	1 32	61419	76	76	13	13	2.00	Cytochrome P450 2C29 OS=Mus musculus OX=10090
	2	2 Sv	vissprot	MZ::CP254_MOUSE	550	60887	27	27	8	8	0.88	Cytochrome P450 2C54 OS=Mus musculus OX=10090
	2	3 Sv	vissProt	el2::CY250_MOUSE	487	61128	27	27	10	10	1.20	Cytochrome P450 2C50 OS=Mus musculus OX=10090
	2	4 Sv	vissProt	ef2::CP2F2_MOUSE	470	59267	32	32	12	12	2.11	Cytochrome P450 2F2 OS=Mus musculus OX=10090 G
	2	5 Sv	vissProt	e2::CP237_MOUSE	338	60590	22	22	8	8	0.89	Cytochrome P450 2C37 OS=Mus musculus OX=10090
	2	6 Sv	vissProt	ef2::CP239_MOUSE	251	60856	13	13	4	4	0.37	Cytochrome P450 2C39 OS=Mus musculus OX=10090
	2 3 3	司定	[夕]	ンパク質の	כעכ	スト	9 55 21	(限定的	」だが)定量	量に関する情報 S=Mus musculu Mus musculus
	3	3 Sv	vissProt	2::HS71L_MOUSE	188	78552	13	13	4	4	0.28	Heat shock 70 kDa protein 1-like OS=Mus musculus O
	4	1 Sv	vissProt	ef2::CYB5_MOUSE	1202	16817	42	42	5	5	3.08	Cytochrome b5 OS=Mus musculus OX=10090 GN=Cyb
	5	1 Sv	vissProt	ef2::PDIA1_MOUSE	1121	64694	53	53	16	16	2.54	Protein disulfide-isomerase OS=Mus musculus OX=100
	6	1 Sv	vissProt	z2::CP1A2_MOUSE	1053	63034	38	38	10	10	1.31	Cytochrome P450 1A2 OS=Mus musculus OX=10090 G
	Z	1 Sv	vissProt	2::ENPL_MOUSE	1008	103744	63	63	19	19	1.53	Endoplasmin OS=Mus musculus OX=10090 GN=Hsp90
Matched peptid 1 MDLVVFL3 51 SQSFTNF5 101 PMAEKIII 151 CLVFLB	les shown i ALT LSCLI SKA YGPVF KGF GVVFS	n bol LLSLW FLYLG	d red. RQSSGE SKPTV:	RGKLP PGPTPLPIIG ILHGY EAVKEALIDR	NFLQIDV GEEFAGR	KNI GSF						
201 INENVKI 251 HKESLDV 301 TTSTTLR 351 MIHEVOR	KTK GSPCD LSS PWLQV TNP RDFID YAL LLLLK FID LLPTS	NGNRW PTFIL CNSFP (YLIK (PDVT)PHAV	KEMRRI SCAPCI SLIDYO QKQVNH AKVQEH TCDIKH	FTLMT LRNLGMGKRN NVICS IIFQNRFDYK CPGSH HKIVKNFNYL HIEQS EFSLENLAST EIDRV VGRHRSPCMQ FRKYL IPKGTTVITS	IEDRVQE DKEFLIL KSYLLEK INDLFGA DRSHMPY LSSVLHD	EAQ MDK IKE GTE TDA SKE	98 - 105 98 - 105 98 - 105 98 - 105 98 - 105 98 - 105 98 - 105	577.9432 577.9534 585.9059 585.9135 585.9243 595.9384	1153.8718 1 1153.8922 1 1169.7972 1 1169.8125 1 1169.8341 1 1169.8623 1	153.6045 153.6045 169.5994 169.5994 169.5994 169.5994	0.2673 0 0.2877 0 0.1978 0 0.2131 0 0.2347 0 0.2628 0	I 0.0042 I P R.OBFPAGEX.I 38 0.013 I P R.OBFPAGEX.I 28 0.012 I P R.OBFPAGEX.I 28 0.012 I P R.OBFPAGEX.I 25 0.025 I P R.OBFPAGEX.I + Outdation (M) 25 0.025 I P P.OSFPAGEX.I + Outdation (M) 20 0.025 I P P.OSFPAGEX.I + Outdation (M)

MASCOT Server の検索結果。同定ペプチドや同定タンパク質、修飾の情報が表示されます。

Accession	<u>Score</u>	<u>Mass</u>	<u>Matches</u>	<u>Match(sig)</u>	<u>Sequences</u>	<u>Seq(sig)</u>	<u>emPAI</u>	Description
d 2::CO4B_HUMAN	164342	217600	3818	3818	103	103	48.75	Complement C4-B C
date: 2::CO4A_HUMAN	163856	217680	3814	3814	102	102	44.57	Complement C4-A C
Z::APOB_HUMAN	127385	624988	3897	3897	214	214	9.70	Apolipoprotein B-10
Z::CERU_HUMAN	59576	143199	1466	1466	50	50	14.97	Ceruloplasmin OS=H
Z::A1BG_HUMAN	58870	58330	1527	1527	19	19	11.90	Alpha-1B-glycoprote
Z::HEMO_HUMAN	44576	58934	1899	1899	30	30	144.13	Hemopexin OS=Hor
Z::CFAH_HUMAN	37520	167416	1521	1521	Hom	opovin OS	Homo can	
₫2::FHR2_HUMAN	1329	36538	82	82	Heili			
2::FHR1_HUMAN	1289	43717	80	80	13	13	7.39	Complement factor I

Spectral Counting 定量指標である emPAI の表示

Г

Protein Protein	Proteins (545) Report Builder Unassigned (140931) §.permalink Protein family members (545 proteins)													
) Colum	ns (:	19 out of 58)		-,										
Filters	• : (no	one)												
Export as	CSV													
Exportas														
<u> †Family</u>	M	<u>DB</u>	Accession	Score	Mass	<u>114/113</u>	<u>115/113</u>	<u>116/113</u>	<u>117/113</u>	<u>118/113</u>	<u>119/113</u>	<u>121/113</u>	Matches	Match(sig)
1	1	SwissProt	del::CO4B_HUMAN	164342	217600	1.033	1.070	1.045	1.016	1.155	1.051	1.055	3818	3818
1	2	SwissProt	Z::CO4A_HUMAN	163856	217680	1.036	1.073	1.044	1.019	1.159	1.052	1.060	3814	3814
2	1	SwissProt	Z::APOB_HUMAN	127385	624988	1.082	1.362	0.827	1.203	1.189	1.093	1.079	3897	3897
3	1	SwissProt	Z::CERU_HUMAN	59576	143199	0.884	1.080	0.711	1.047	1.283	1.027	1.027	1466	1466
4	1	SwissProt	d 2::A1BG_HUMAN	58870	58330	0.949	1.201	0.994	1.124	1.181	1.041	1.085	1527	1527
5	1	SwissProt	2::HEMO_HUMAN	44576	58934	0.970	1.161	0.940	1.086	1.334	1.053	1.103	1899	1899
<u>6</u>	1	SwissProt	Z::CFAH_HUMAN	37520	167416	0.962	1.130	0.872	1.103	1.306	1.096	1.132	1521	1521
<u>6</u>	2	SwissProt	d2::FHR2_HUMAN	1329	36538	0.858	1.123	0.687	1.132	1.406	1.065	1.071	82	82

プロダクトイオンスペクトルのピーク強度を使った定量

		Accession	Score	Mass	(15ngR1+15ngR2+15ngR3)/(3ngR1+3r	ngR2+3ngR3)	SD(geo)	#	(15ngR
i	1.1	sp P06733 ENOA_HUMA	33306	47481		1.1327	1.0902	34	
	1.2	sp P13929 ENOB_HUM	9940	47299		1.1704	1.1012	5	
	2.1	sp P07900 HS90A_HU	18698	85006		1.1109	1.1024	45	
	2.2	sp P08238 HS90B_HU	17983	83554		1.1230	1.0404	45	
	2.3	sp P14625 ENPL_HUM	7026	92696		1.1133	1.0544	29	
	2.4	sp Q12931 TRAP1_HU	2003	80345		1.1043	1.0652	9	
	3.1	sp P05787 K2C8_HUM	17641	53671		1.1180	1.1617	48	
	3.2	sp P08670 VIME_HUM	11853	53676		1.1082	1.0447	38	
	3.3	sp P08729 K2C7_HUM	8882	51411		1.1129	1.0392	31	

Distiller での定量解析結果

(Precursor XICs 定量は MASCOT Server に加え、Distiller 定量モジュールが必要です。)

1-3. 検索手法とマニュアルで対応しているページ

2-3 でご説明するように、MASCOT の検索は3つの方法:PMF (Peptide Mass Fingerprint),SQ (Sequence Query), MIS (Mascot Ions Search)が使用可能です。 このマニュアルで各手法に関連がある章は、それぞれ以下の通りです。

PMF : 1,2,3,4,5,6,7,8,9,10,11,12,13

SQ : 1,2,3,4,5,6,7,8,9,10,11,12,13

MIS : 1,2,3,4,5,6,7,8,9,10,11,12,13

Sequence Query については使用頻度が低い事から、本マニュアルにて Query の文法や結果の解釈に ついて詳しく説明していません。検索時に必要な入力である Sequence Query の文法については <u>https://www.matrixscience.com/help/sq_help.html</u>を、 結果の解釈、結果画面の見方については MIS と概ね同じですので7章をご覧ください。

<mark>2. Mascot Server</mark> のシステム

2-1. MASCOT Server は WEB アプリケーションである

MASCOT Server は WEB アプリケーションで、クライアントーサーバーシステムを採用しています。 HTTP プロトコルを介してデータのやり取りを行います。ユーザーは、MASCOT Server プログラムが インストールされているコンピューター、あるいはネットワーク上の離れたコンピューター、どちらからでも MASCOT Server を利用する事が可能です。MASCOT Server をインストールするマシンには、 WEBサーバー機能を提供するプログラム(通常はWindows なら IIS,Linux なら Apache)をインストール・ 稼働させる必要があるほか、コンピューターが置かれているネットワーク上で HTTP プロトコルの通信が 許可されている必要があります。

2-2. MASCOT Server のインストール先と各フォルダ

MASCOT Server に関連するファイルやプログラムはデフォルト設定で「C:¥inetpub¥mascot」 フォルダ (Windows) あるいは /usr/local/mascot ディレクトリ (Linux) 以下に配置されるよう インストールされます。インストール先のフォルダ /ディレクトリはインストール時に設定可能であるほか、 一部のみ全く別の場所へ配置することも可能です。

以下、MASCOT のフォルダ/ディレクトリの基本構成です。

各フォルダ/ディレクトリ に含まれる内容は以下の通りです(概ねフォルダ名から想定することが できます)。

bin : CGI 以外の実行プログラム

cgi : CGI の実行プログラム

cluster: clusterシステム使用時各計算ノードに配布するプログラム

config : 設定ファイル、ライセンスファイル

data : MASCOT 検索結果ファイル。結果ファイルは検索日の日付名フォルダ(yyyymmdd)の下に 格納される。

htdig : ウェブページ検索プログラム htdig 関連のファイル

html : web ページドキュメントファイル

ML_models: 機械学習 refinement を実施するプログラムを格納

logs : 検索並びに各主動作のログファイル

per164 : per1 のプライベートコピー (version 5.18)

sequence:検索対象となるデータベース

- current : 現在使用中のファイル

- **incoming**:次に使用するデータベースの一時保管場所

- old : 1 つ前に使用していたデータベースの fasta ファイルを保存 (復元可能)

sessions: セキュリティに使用するセッション情報

taxonomy: 生物種情報に関するファイル

unigene: UniGene インデックスファイル

x-cgi : セキュリティ制御などと関連して使用される CGI の実行プログラム

2-3.3種類の MASCOT 検索

MASCOT Server では入力データのタイプ別に3つの検索方法を使用する事ができます。

PMF (Peptide Mass Fingerprint) 法:
 MS1,ペプチドピークの組み合わせからタンパク質を同定

■ Sequence Query 法:

MS1 や MS2 のピーク情報に各種絞り込み条件を追加して検索

例) 1234.2 seq(n-AC[DHK]) seq(c-HI)

1314.7 tag(513.3,T[I|L]SP,911.5)

■ MIS (MS/MS Ions Search) 法:

MS1 情報と MS2 情報を組み合わせてペプチドを同定。MS1 でペプチドを絞り込み、MS2 で マッチング。同定されたペプチドをもとにタンパク質を同定(推定)

主に TOF などでプレカーサーマススペクトルを測定した場合、そのデータからタンパク質を同定するため には Peptide Mass Fingerprint 法を使用します。またショットガン解析、ペプチドの MS1,MS2 情報を もとにペプチド配列やタンパク質を同定する場合、MS/MS Ions Search 法が使用されます。

3. MASCOT Server の入力データ

この章では MASCOT Server で検索を行うための前処理と検索の流れを説明します。MASCOT Server で検索を行うためには、質量分析装置で測定したデータをそのまま MASCOT Server に投げるのではなく、 事前にデータ処理をする必要があります。データ処理のポイントは2つあります。

・ノイズをカットし、ペプチド又はフラグメントの質量を反映するピークのみを集めたデータにする事 (3-1) ・バイナリ形式の Raw データを判読可能なテキストファイルまたは xml フォーマットに変換する事 (3-2)

すなわち MASCOT 検索を行う前に、装置の raw データを判読可能で必要な情報のみ抽出した データに変換する必要があります。MASCOT Server 自身では raw データを変換する事はできません。 3-1 では検索に投げる前にデータの処理が必要な理由と MASCOT Server が受け付けるファイル フォーマットについて、3-2 では raw データから MASCOT で読み込みが可能なファイルフォーマットに変換 するプログラムについてご紹介します。

3-1. MASCOT Server が読み込み可能なファイルフォーマット

MASCOT Server が読み込み可能なファイルフォーマットと変換の際に行われたピーク抽出処理の内容 について説明しています。

3-1-1. PMF で対応するファイルフォーマット

PMF 検索の入力データはペプチドの質量が反映されたピークに関する情報です。PMF の入力データ 作成の際にはペプチド由来のピークと考えられる箇所(下図、青色の●)を推定し、そのピークの m/z のみ、 あるいは m/z と intensity 情報を利用します。ノイズに該当する個所の数値はこの段階で捨てられます。

ファイルについて、テキストファイルであればファイルの拡張子に関係なく検索を実行できます。 ファイルの中身として、下左図のように 1 行につき1つの m/z が先頭に書かれていれば検索が可能です。 下右図のように後ろに intensity に該当する値が m/z の次に記載されている場合、intensity 情報を 参考に入力データの m/z の組み合わせを再構成したいくつかのパターンを作成し、各パターンのうち スコアが最も高いケースを真の入力データとして採用する方式となります。そのため同じ測定データでも 検索時のピークリストが後ろに intensity 情報を含まないケースと含むケースで検索結果を比べた場合、 結果が異なるケースがあります。

\bigcirc	\bigcirc	
832.662	361.21774	4838.6552
903.342	487.26656	5281.3009
1186.439	494.28934	8868.6732
1373.681	505.77755	16079.047
1403.722	686.36334	22677.156
1515.444	723.34797	36555.65
1727.916	836.78635	6731.0498
1743.951	955.4842	2890.8536
1759.966	1002.4743	5553.321
1788.721	1020.521	2661.7174
1804.71	1263.679	1759.9609
2174.812	1350.7063	3770.1817
2190.112	1495.685	43476.619
2256.871	1533.6332	3063.8439
2273.266	1675.6148	3315.1174
2288.489	-	
ر ا)	

PMF 検索では上記のように単純なテキストファイルに加え、各装置メーカー/共通フォーマットから出力 される以下のファイルの読み込みにも対応しています。

- AB SCIEX Data Explorer (.PKM)
- Bruker Analysis AutoXecute Data Report
- Bruker (.XML)
- mzData (.XML)

3-1-2. MIS で対応するファイルフォーマット:どのような情報が抜き出されているか

MIS 検索では入力データとしてペプチド並びにフラグメントの質量が反映されたピークの情報を集約 して利用します。下図にもあるように、プレカーサーマススペクトルからはペプチドの質量を計算するため に必要な m/z と電荷の情報(不明な場合は推定値)を、プロダクトイオンマススペクトルからはフラグメント を反映するピークを選び、ノイズがカットされた情報を抽出します。

3-1-3. MIS で対応するファイルフォーマット:mgf

Mascot Generic Format (mgf) は MASCOT Server の MIS 入力データとして最も使用されている フォーマットです。以下のような構成となっています。

1query 毎に BEGIN IONS で始まり END IONS で終わります。①の部分、赤い文字の行は プレカーサーマススペクトルから得られた情報に該当します。pepmass が m/z を、charge が電荷を 表します。②の部分、緑の文字の行はプロダクトイオンマススペクトルから得られた情報に該当し、ノイズが カットされフラグメントピークに該当する m/z と intensity の情報となります。なお intensity の後に さらに電荷情報が記されている場合、MASCOT Server 側で 1 価に換算(decharge)したフラグメント ピークとして 扱われます。intensity の後に電荷情報が記された形でのファイル出力すべての ソフトウェアで行われる わけでなく、現在のところ MASCOT Distiller を使用する事でのみ実現可能です のでご注意ください。

mgfファイルには複数の query をまとめて保存する事もできます(下図)。

mgf ファイルを得る方法として、MASCOT Distiller, ProteoWizard の msconvert,そして各社装置 メーカーの付属ソフトウェアから出力するオプションがあります。詳細は **3-2** で説明いたします。

3-1-4. MIS で対応するファイルフォーマット:mgf 以外のフォーマット

MASCOT Server の MIS 検索では mgf ファイル以外の各種フォーマット変換後ファイルの読み込みにも 対応しています。対応フォーマットは以下の通りです。

- Finnigan (.ASC)
- Micromass (.PKL)
- Sequest (.DTA)
- PerSeptive (.PKS)
- Sciex API III
- Bruker (.XML)
- mzData (.XML)
- mzML (.mzML) * 多くの装置で出力可能なフォーマットで、mgfの次によく利用されます。

各フォーマットの詳細は以下の WEB ページをご覧ください。 https://www.matrixscience.com/help/data_file_help.html#FORMAT

3-2 . raw データ変換プログラム

バイナリ形式の Raw データを判読可能なテキストファイルまたは xml フォーマットに変換するプログラムは、大きく分けると以下の3種類あります。

ProteoWizard msconvert

オープンソースでクロスプラットフォームのツールまたはライブラリです。 https://proteowizard.sourceforge.io/

msconvertGUI.exe というプログラムを起動してプログラム内で mgf を作成する事もできますし、 MASCOT Daemon と組み合わせて利用する事もできます(**4-3** で簡単な操作の紹介をしています)。

MASCOT Distiller

弊社が販売しているソフトウェアです。MASCOT Server/Daemon といった弊社取り扱いソフトウェア との連携の良さや多価フラグメントピークデータも検索に組み込む事ができるのが特徴です。 <u>https://www.matrixscience.com/distiller.html</u> (英語紹介ページ) <u>https://www.matrixscience.co.jp/distiller.html</u> (日本語紹介ページ)

特に、DeepLC を利用した予測保持時間情報をペプチド同定に応用する方法や、多価のフラグメントピークを検索に応用したい crosslinking、Topdown 解析などに有用です。

■ 質量分析装置付属のソフトウェア

ほとんどの質量分析装置付属の解析ソフトウェアでは mgf ファイル(ピークリストのテキストファイル)や mzMLフォーマットに出力が可能で、それらを MASCOT 検索に利用する事ができます。mzML で使用する 場合、ピークに該当するものを選び出した状態でそれを反映したファイル出力がされている事が望ましい です。

4. MASCOT Server 検索方法

この章では MASCOT Server で検索を行う方法についてご説明しています。

4-1 では MASCOT Server をネットワーク上で指定する方法についてご説明します。また **4-2** では 何らかの形で準備した mgf を入力データとして、WEB ブラウザを介して MASCOT 検索を実施する方法を ご説明します。

4-3 以降では raw データから mgf への変換を意識することなく検索を実施する方法についてご紹介 します。4-3 は MASCOT Server に無料でバンドルされているソフトウェア MASCOT Daemon を使った 検索方法、そして 4-4 では質量分析装置メーカーが提供しているソフトウェアを使って行う方法の概要に ついてご案内いたします。

4-1. 「URL」と MASCOT Server [ネットワーク上で MASCOT を指定する方法]

MASCOT Server は WEB アプリケーションであり、自分自身あるいは別のコンピューターから MASCOT Server を URL で指定します。

URLの記入例としては以下のような記述となります。

http://(computer 名)/mascot/	例:	http://mascotserver/mascot/
http:// (IP アドレス)/mascot/	例:	http://192.168.100.222/mascot/

MASCOT Server のコンピューター自身から MASCOT を指定する場合、下図のように

http://localhost/mascot/

という URL で指定できることがほとんどです。

一方 MASCOT Server とは別のコンピューターから MASCOT Server を URL で指定する場合、 コンピューター名と IP アドレスのどちらが、あるいは両方使用可能かについてはケースバイケースです。 IP アドレスの方がより原始的な仕組みになるため、MASCOT Server に固定 IP アドレスが割り振られて いる場合は IP アドレスでの指定をする方がより可能性が高く接続できます。一方 ネットワークの仕組み として DHCP など動的な IP 割り当てが行われている場合はコンピューター名による指定をする事で 逐次変更される IP アドレスにも対応する事が可能です。

4-2. 変換済みファイルを WEB ブラウザで検索

何らかの方法でデータ変換を行った入力ファイルを手元に持っている場合、WEBブラウザを使って MASCOT Server の検索を行う事ができます。PMFの場合と MIS の場合に分けてご案内します。

4-2-1. PMF: テキストデータを WEB ブラウザで検索

- ① ピークリストファイル(テキスト)を準備
- ② ブラウザを開き、MASCOT Server ヘアクセス
- ③ Home -> Access MASCOT Server
- ④ 「Peptide Mass Fingerprint」の「Perform search」
- ⑤ 検索パラメーター並びに入力データを指定
- ⑥「Start search」ボタンを押すことで検索実行

4-2-2. MIS: mgf ファイルを WEB ブラウザで検索

- ① mgf/mzML ファイルを準備
- ② ブラウザを開き、MASCOT Server ヘアクセス
- ③ Home -> Access MASCOT Server
- ④ 「MS/MS Ions Search」の「Perform search」
- ⑤ 検索パラメーター並びに入力データを指定
- ⑥「Start search」ボタンを押すことで検索実行

4-3. Daemon を使って raw データを直接検索

毎回 raw ファイルから mgf ファイルを準備するのが大変な場合、MASCOT Daemon 上で変換 プログラムを介して raw データから自動的に変換しつつ検索する方法があります。

詳細は

https://www.matrixscience.co.jp/supportpdf/MASCOTDaemon_ver30_manual.pdf

の「3.チュートリアル」(P.11~)をご覧ください。

変換プログラムとして ProteoWizard と MASCOT Distiller を使用する方法についてそれぞれご案内 します。

4-3-1. Daemon + ProteoWizard

先程ご案内した

https://www.matrixscience.co.jp/supportpdf/MASCOTDaemon_ver30_manual.pdf

の「3.チュートリアル」(P.11~)は、ProteoWizard を使って変換して検索を行っています。詳しくは チュートリアルをご覧ください。

別資料内の内容をまとめた、簡単な手順について以下にご案内します。

- 1 Daemon を起動
- 2 Parameter Editor タブで検索条件を指定し、条件をファイルに保存するため「Save」または「Save As」
- ③ Task Editor タブでタスク名、検索対象のファイル、パラメータファイルを指定
- ④ Task Editor タブの「Data import filter」で「ProteoWizard msConvert」を選択し、「Options」の「Peak list format」で「MGF」や「mzML」を選択してから「OK」ボタン。MGF か mzML かは、上記3
 で設定したパラメータファイルの file format 項目に合わせる。
- ⑤ Task Editor タブで「Run」ボタンを押すことで検索実行
- ⑥ Status タブに検索の進捗が表示。検索完了すると結果画面へのURLが表示されるのでクリック

①~⑥の手順について理解の一助となる図が次頁にございますのでそちらも併せてご参照ください。

4-3-2. Daemon + Distiller

Mascot Distiller と同じコンピューターにインストールされた Daemon では、変換プログラムに Mascot Distiller を使用する事ができます。手順は **4-3-1** とほぼ同じですが、データ変換部分の指定個所である ④が少し異なります。

- 1 Daemon を起動
- ② Parameter Editor タブで検索条件を指定し、条件をファイルに保存するため「Save」または「Save As」
- ③ Task Editor タブでタスク名、検索対象のファイル、パラメータファイルを指定
- ④ Task Editor タブの「Data import filter」で「Mascot Distiller」を選択し、「Options」の
 「Data File Format」で raw ファイルの形式を、「Mascot Distiller Processing Options」で
 変換の際に使用するピーク変換用のパラメーターセットを選択してから「OK」ボタンを押す
- ⑤ Task Editor タブで「Run」ボタンを押すことで検索実行
- 6 Status タブに検索の進捗が表示。検索完了すると結果画面へのURLが表示されるのでクリック

①~⑥の手順について理解の一助となる図が次頁にございますのでそちらも併せてご参照ください。

(A) 10						~		
Mascot Daemon					- U	×		
File Edit Help	Task Editor Paramet	ter Editor		(2)				
Status Event Eog	Tusk Editor							
Filename: C:	¥ProgramData¥Matrix	Science¥Mas¥d	lefault.par	New Open	Save Save As			
All Searches								
User name	<mascot_user_full_n< td=""><td>iame></td><td>Us</td><td>er email <mascot_user_email></mascot_user_email></td><td>></td><td></td><td></td><td></td></mascot_user_full_n<>	iame>	Us	er email <mascot_user_email></mascot_user_email>	>			
Search title	<pre>daskname> (<param< pre=""></param<></pre>	neters>), submitted	from Daemon	on <localhost></localhost>				
Taxonomy	All entries			 Report top 	AUTO - hits			
Databases	SwissProt		Select Data	bases Protein mass	s kDa			
	1		Decoy	Enzyme	Trypsin 🔻			
Fixed modifications			Select Modifie	cations				
		N	Monoisotopic	Max. misse	d cleavages 1			
Variable	Oxidation (M)	A	Average	C Peptide char	ge 2+ and 3+ 💌			
modifications			Pept	tide tol. ± 0.6 Da	▼ #13C 0 ▼			
	1			1				
MS/MS	. E Data							
MS/MS lons sear	rch V Data	Mascot Daem	non				- 0	×
Error tolerant sea	arch 1 month	File Edit H	lelp	(3)				
		Status Event Lo	og Task Edito	Parameter Editor				
-							()	
		(3)		Jask DaemonTest01			New Bun	
				jedemonreator	D			4
		-Parameter s	set mData¥Matrix	Scienc, ¥default par	Data import filter		- Ontions	1
		C.Triogia			None			
		Data file lis	t		Mascot Distiller Proteo Wizard msConv	ert		
	(3 Drag and below or o	drop data files click on Add	into the area	C Start at	21	021 - 15:59	
		D:¥installer¥	MASCOTWin	270¥mskk¥sampledata¥SLA	C Start on completion	n of	unning batch tasks 📃 💌	I
					C Real-time monitor			7
					C Follow-up		Search priority 0	
					Actions			
					Actions Auto-e	xport	External processes	
					Follow-up			
		<		>	No follow-up required		• 0	
		,			Discard resu	lts		
		Delete	Add Fold	der Add Files	🗖 Repeat at inte	ervals of	1 💌 days 💌	I
		Merge	MS/MS files in	nto single search	🔽 Pass data to	Nor	ne 💌	1
Mascot Daemor					<u> </u>			
File Edit Hel	D							
Status Event Log	- Task Editor Parame	eter Editor						
						1		
🔄 Task Databa	ase al Search 02	Parameter Data file		Value	An Plasma Fina ml. 014 mi			
DDA	-Plasma_5ng-mL_0	Search Title		20210310 Tutorial Search 02 b	y Takaesu (C:¥temp¥Distille			
	A-Plasma_20ng-mL_(A-Plasma_50ng-mL_(Accession Protein MW		TVAZ2_HUMAN				
	A-Plasma_blank_011	Score		16	6			
DDA	p-Plasma_25ng-mL_	Description Database		T cell receptor alpha variable 2 SwissProt 2020 06 fasta	6-2 OS=Homo sapiens ØX=			
⊡ DDA ⊡	vp-riasma_b0ng-mL_ al02	Result file UR	RL	http://localhost/mascot/c	gi/master_results.pl?fil			
🗄 😔 3: Tutoria	al 03	Cache folder	er	C:#ProgramData#Matnx S C:#ProgramData#Matrix S	cience‡Mascot Daemoi cience¥Mascot Daemoi			
		Search submi	itted	2021/03/11 10:50:50				
		Search comp	leted	2021/03/11 10:51:22				
		Last event		2021/03/11 10:51:19 Search o	completed			

4-4. 質量分析装置メーカーのソフトウェアから検索

弊社で準備している検索の方法とは別に、質量分析装置メーカーにて販売している各種解析 ソフトウェアから MASCOT を呼び出して検索を行う方法があります。その場合、MASCOT Server と 装置メーカーソフトウェアは基本的に別のコンピューターにインストールされており、装置メーカー ソフトウェア上で MASCOT Server を URL で指定する事になります。

接続がうまくいかない場合どのレベルで接続できていないかを確認するため、ソフトウェアで設定を 行う前に同じコンピューターの WEB ブラウザで MASCOT を URL 指定して、Home 画面を開く事が できるか必ずご確認頂く事を推奨します。

検索後、結果をどのように利用するかはソフトウェアによって異なります。検索後 MASCOT Server の 検索結果画面がブラウザで表示されるケースもあれば、MASCOT Server の検索結果の数値だけが 装置メーカーの解析ソフトウェアに取り込まれ表示される事もあります。いずれのケースにおいても MASCOT Server で検索された内容は必ず MASCOT Server に残り、MASCOT の Search log などから 確認する事が可能です。

5. 検索パラメーターとデータベース

この章では MASCOT 検索時に指定するパラメーターについて説明しています。

5-1~5-3 では各検索手法におけるパラメーターについて、検索手法別に1つ1つ説明をしています。
5-4 ではパラメーターの中でカスタマイズ可能な項目について、5-5 では検索対象のデータベースについて、
5-6 では WEB ブラウザで検索を行う際にブラウザの cookie 機能を使って予めいつも使うパラメーターの 情報を保存する方法について説明しています。

5-1. PMF:検索パラメーター 一覧

MASCOT	Peptide Mass Fing	Jerprint	
(1) Your name] Email	
(3) <u>Search title</u>		(5)	
(4) Database(s)	PXD001385 SARS-CoV-2 SwissProt test2 Trembl	(6) Allow up to	Trypsin
(7) <u>Taxonomy</u>	All entries		~
(8) <u>Fixed</u> modifications	none selected	<	1TFA (C-term) 2PropGlyGly (K) 2TFA (C-term) 6C-CysPAT (C) 6C-CysPAT (N-term)
	Display all modifications		Acetyl (C)
(9) <u>Variable</u> modifications	none selected	<	Acetyl (N-term) Acetyl (Protein N-term) Acetyl (S) Alexa488 (Q)
(10) Protein mass	kDa (1	1) _{Peptide tol. ±}	1.2 Da 🗸
(12)Mass values	<mark>●</mark> мн ⁺ ○м _г ○м-н ⁻		
(13) Data input	● Data file ファイルを選択 選	択されていません	
	○ Query		
			le
(14	1) Start Search	(1	5) Reset Form

PMF 検索のパラメーターについて、以降順に説明いたします。

(1) Your name, (2) Email, (3) Search title

次頁図(赤枠)のように、検索結果画面並びに Search log において検索の内容や検索者を確認する際に 使用します。任意の文字列を入力可能です。Email については Email で検索結果を通知するなどの設定を していない場合、メモ欄の代わりとして使用する事も可能です。

Λ	MATH SCIEN	RIX NCE	IASCOT	Search	Results
Us E- Se	ser mail earch ti	:M : itle:M	onitor Test DB 0 S/MS Test Searc	ch	
м: Da Tii	ntabas mestar Re-sea	me: te e : U mp : 1	est_search.mg P5640_H_sapier 2 Aug 2021 at 0 All ○ Non-sigr	ns 20201007 (10 3:59:52 GMT nificant 〇 Unass	igned
<u>۵</u>	OT sea	arch loc			
ersion	: 2.8.0.1 - 1	mskk (UC2)	H-LHC6-Z3V8-W62R-K3M8	3)	many: 150 6 in log 6 after filters Data dir:
ersion ort / filte ob#	: 2.8.0.1 - 1 ar Log File: PID	mskk (UC2) /logs/search dbase	J H-LHC6-Z3V8-W62R-K3M8 Start at: (-1=c User Name	3) pnd_1=start) 1 bow Email	many: 50 6 in log 6 after filters. Data dir: GETs2: Title
rsion ort / filte b#	: 2.8.0.1 - 1 T Log File: PID	mskk (UC2) /logs/search dbase	I-LHC6-Z3V8-W62R-K3M8 <u>Start at: (-1-c</u> User Name	3) Email	many: E9 6 in log 6 after filters. Data dir: GETe2: D Title O
rsion ort / filte b#	: 2.8.0.1 - 1 ar Log File: PID 0 2	mskk (UC2) /logs/search dbase 0 2	H-LHC6-Z3V8-W62R-K3M8 Start at: (-1=6 User Name 2	8) Email	many: 50 6 in log 6 after filters. Data dir: Title 0 2
rsion ort / filte b#	: 2.8.0.1 - 1 ar Log File: PID 2 12096	mskk (UC2) /ogs/searct dbase 	I-LHC6-Z3V8-W62R-K3M8	8) email 1=start) 1 bow email c c c	many: E96 in log_6 after filters_Data dir: Title 2 2 Copy of raw 03 (C:¥ProgramData¥Matrix Science¥Mascot Daemon¥parameters¥def submitted from
rsion ort / filte b# 42 41	: 2.8.0.1 - 1 r Log File: PID 2 12096 5016	mskk (UC2) /logs/searce dbase 2 SwissPro UP5640	H-LHC6-Z3V8-W62R-K3M8	8) end 1=start) 1 how Email © I	Title Copy of raw 03 (C:¥ProgramData¥Matrix Science¥Mascot Daemon¥parameters¥def submitted from MS/MS Test Search
ersion ort / filte b# 42 41 40	: 2.8.0.1 - 1 r Log File: PID 2 12096 5016 11760	mskk (UC2i logs/search dbase SwissPro UP5640_ SwissPro	H-LHC6-Z3V8-W62R-K3M8 Start at: (-1-c User Name 2 H Monitor Test DB 0	8) end 1-start) 1 bow Email 0 2	Title Copy of raw 03 (C:¥ProgramData¥Matrix Science¥Mascot Daemon¥parameters¥def submitted from MS/MS Test Search Copy of mgf 02 (C:¥ProgramData¥Matrix Science¥Mascot Daemon¥parameters¥def submitted from

(4) Database(s)

検索対象のデータベースを選択します。データベースには以下の2種類から選択可能です。

- AA: Amino Acid, アミノ酸配列
- NA: Nucleic Acid, 核酸配列

Ctrl キーを押しながらクリックする事で複数のデータベースを選択する事もできます。

(5) Enzyme

タンパク質の切断パターンを指定します。

(6) Allow up to

Enzyme 設定について、切断箇所と認定された箇所をN回見逃し連結したペプチドを作成する事ができます。例えば Trypsin 設定では K,RのC末端が切断されますが、

EG**R**N**R**FPFLSLSQ**R**

という配列があった場合、missed cleavage 設定が0なら

EG**R**

NR

FPFLSLSQ**R**

という3種類のペプチドのみを考慮します。missed cleavageが1の場合、上記に加え

EG**RNR**

NRFPFLSLSQR

の2種類のペプチドも考慮する対象として追加されます。

(7) Taxonomy

生物種の絞り込みに関する設定です。Taxonomy 設定がされているデータベース(SwissProt など)のみ 適用可能です。設定されていないデータベースに使用した場合、エラーメッセージが出ますが検索は 問題なく実行する事ができます。

リストに記載されている生物種について、ユーザーがカスタマイズする事も可能です。

(8) Fixed Modification, (9) Variable Modification

修飾に関する設定です。設定した項目について、対象アミノ酸の質量の変化を考慮します。(8)の Fixed は対象のすべてのアミノ酸について指定した内容に質量が変更します。一方 (9)の Variable は修飾が つくパターンとつかないパターンの両方を考慮します。両方を考慮する分融通が利くように思えますが、 検索時間が長くなる事とスコアリングで不利になり同定しにくくなるというデメリットがあります。

修飾を指定する場合、右側にあるリストから該当項目を選び、真ん中にある < ボタンを押して Fixed または Variable modification 設定項目として指定します。

またリストに初期表示される修飾は使用可能な設定のごく一部で、頻度の低い項目については初期に 表示されないようになっています。それらのその他多くの設定を表示させるには、画面中央にある 「**Display all modifications**」にチェックを入れる事で右側のリストが変化し、MASCOT に登録されてい るすべての修飾がリストに表示されます。

(10) Protein mass

タンパク質の質量に対する上限値です。データベースにエントリーされている配列の全長に対する質量で はなく、マッチしたペプチドのうち最も N 末端側と C 末端側でマッチした領域を対象として、その N 末端 から C 末端までの配列の質量が計算対象となります。従って検索時のフィルターではなく、検索結果表示 時のフィルターとして機能します。

(11) Peptide tol.±

ペプチドの質量について、実測値から計算された値とペプチド配列から計算された値との<mark>許容誤差</mark>です。 ユーザー側で装置のスペックや事前に行ったキャリブレーションの結果を基に適正値を判断します。

(12) Mass values

PMF 検索においてクエリーの各ピークが MH+か M-H-か、あるいはイオンが負荷していない質量に換算 されたものなのか(Mr)を指定します。

(13) Data file / Query_Data input

検索 query となるデータを指定します。ファイルで渡す場合は「**Data file**」で該当ファイルを選択します。 一方、ファイルでなく直接データを記入して渡す場合、「Query」を指定して、「Data input」欄にデータを記 入(貼り付け)します(下図)。データフォーマットについては「**3-1-1.PMF で対応するファイルフォーマット**」 をご覧ください。

(14) Start Search

検索を開始します。

(15 Reset Form

パラメーター設定をデフォルト状態に戻します。

5-2. Sequence Query: 検索パラメーター 一覧

(1) Your name		(2) Email		
(3) _{Search title}				
(4) atabase(s)	Human_EST contaminants cRAP IPI_human Mouse	 (5) Enzyme (6) Allow up to (7) Quantitation 	Trypsin 1 missed cleavages None	
Taxonomy	All entries		~	
(9) <u>Fixed</u> modifications	none selected	× ×	1TFA (C-term) 2PropGlyGly (K) 2TFA (C-term) 6C-CysPAT (C) 6C-CysPAT (N-term) Acobi (C)	
10)	Display all modifications		Acetyl (K)	
modifications	none selected		Acetyl (N-term) Acetyl (Protein N-term) Acetyl (S)	
11)	(12	(13)	Alexa400 (Q)	
Peptide tol. ± 14) Peptide charge	1.2 Da V # 1	C U V MS/MS tol. ±	0.6 Da 🗸	
15) Query				
16)				

(1) Your name, (2) Email, (3) Search title

次頁図にあるように、検索結果画面並びに Search log において検索の内容や検索者を確認する際に使用します。任意の文字列を入力可能です。Email については Email で結果を返すなどの設定をしていない 場合、メモ欄の代わりに使用する事もできます。

MATRIX MASCOT Search Results										
l E S	Jser -mail Search	: title :	Monitor T MS/MS T	Test DB 0 Test Search						
יי [ד	ataba	se :	UP5640_	H_sapiens 2020)1007 (100,100	0 sequences; 40,284,240 residues)				
	MASC Version:	2.8.0.1 -	arch log mskk (UC2H	 -LHC6-Z3V8-W62R-K	3M8)					
N	Sort / filter	Log File:	/logs/search	Ctart ati (1 and, 1 atart) [:	hen manyr an Gin log, 6 after filterer Data din GETch D				
	Job#	PID	dbase	User Name	Email	l itle				
		<	✓		✓					
1										
J	1242 12096 SwissPro Copy of raw 03 (C:¥ProgramData¥Matrix Science¥Mascot Daemon¥parameters¥def submitted from									
	<u>1241</u>	5016	UP5640_I	Monitor Test DB 0		MS/MS Test Search				
	<u>1240</u>	11760	SwissPro			Copy of mgf 02 (C:¥ProgramData¥Matrix Science¥Mascot Daemon¥p submitted from	oarameters¥defa			
	<u>1239</u>	8376	SwissPro	Monitor Test DB 0		MS/MS Test Search				
	<u>1239</u>	8376	SwissPro	Monitor Test DB 0		MS/MS Test Search				

(4) Database(s)

検索対象のデータベースを選択します。データベースには以下の2種類があります。

- AA: Amino Acid, アミノ酸配列
- NA: Nucleic Acid, 核酸配列

Ctrl キーを押しながらクリックする事で複数のデータベースを選択する事もできます。

(5) Enzyme

タンパク質の切断パターンを指定します。

(6)Allow up to

Enzyme 設定について、切断箇所と認定された箇所をN回見逃し連結したペプチドを作成する事ができます。例えば Trypsin 設定では K,Rの C 末端が切断されますが、

EG**R**N**R**FPFLSLSQ**R**

という配列があった場合、missed cleavage 設定が0なら

EG**R**

 $\mathbf{N}\mathbf{R}$

FPFLSLSQ**R**

という3種類のペプチドのみを考慮します。missed cleavageが1の場合、上記に加え

EG**RNR**

NRFPFLSLSQR

の2種類のペプチドも考慮する対象として追加されます。

(7) Quantitation

定量計算に関する設定項目です。MASCOT では Spectral Countingの1種である emPAI についてはここ で指定することなく結果画面に自動的に表示されます。

この設定は利用の際、事前に設定を準備する必要があり ます。選択項目のうち、後ろに[**MD**]がついていないものに ついては MASCOT Server 単独でも計算が可能です。

[MD]が後ろについている項目については計算のために ソフトウェア MASCOT Distiller(計算モジュール搭載)が 必要です。どちらの手法も、定量計算を実施するためのサ ンプル測定と、MASCOT での事前の設定項目の作成が必 要になります。

詳細は「10-2.Quantitation」をご覧ください。

Quantitation	None	~
	None	
Crosslinking	iTRAQ 4plex	
Fixed	iTRAQ 4plex (protein)	
modifications	iTRAQ 8plex	
mouncations	TMT 6plex	
	TMT 2plex	
	TMT 10plex	
	TMTpro 16plex	
	DiLeu 4plex	
Variable	18O multiplex	
modifications	SILAC K+6 R+6 multiplex	
mouncutione	IPTL (Succinyl and IMID) multiplex	
	ICPL duplex pre-digest [MD]	
	ICPL duplex post-digest [MD]	
Bontido tol →	ICPL triplex pre-digest [MD]	
replice toi. I	ICPL quadruplex pre-digest [MD]	
eptide charge	18O corrected [MD]	
opinio onargo	15N Metabolic [MD]	
Data file	15N + 13C Metabolic [MD]	
	SILAC K+6 R+10 [MD]	-

(8) Taxonomy

生物種の絞り込みに関する設定です。Taxonomy 設定がされているデータベース(SwissProt など)のみ 適用可能です。設定されていないデータベースに使用した場合、エラーメッセージが出ますが検索は 問題なく実行する事ができます。

リストに記載されている生物種について、ユーザーがカスタマイズする事も可能です。

(9) Fixed Modification, (10) Variable Modification

修飾に関する設定です。設定した項目について、対象アミノ酸の質量の変化を考慮します。 (10)の Fixed は対象のすべてのアミノ酸について指定した内容に質量が変更します。一方 (11)の Variable は修飾が つくパターンとつかないパターンの両方を考慮します。両方を考慮する分融通が利くように思えますが、 検索時間が長くなる事と同定判定で不利になり同定しにくくなるというデメリットがあります。修飾を指定 する場合、右側にあるリストから該当項目を選び、真ん中にある < ボタンを押して Fixed または Variable modification 設定項目として指定します。

Fixed	none selected		Acetyl (K)	
modifications		>	Acetyl (N-term)	
			Acetyl (Protein N-term)	
			Amidated (C-term)	
			Amidated (Protein C-term)	
	Display all modifications 🗌		Ammonia-loss (N-term C)	
			Carbamidomethyl (C)	
Variable	none selected		Carbamidomethyl (N-term)	
modifications		>	Carbamyl (K)	
		<	Carbamyl (N-term)	
	-		Carboxymethyl (C)	-

またリストに初期表示される修飾は使用可能な設定のごく一部で、頻度の低い項目については初期に 表示されないようになっています。それらのその他多くの設定を表示させるには、画面中央にある 「**Display all modifications**」にチェックを入れる事で右側のリストが変化し、MASCOT に登録されてい るすべての修飾がリストに表示されます。

(11) Peptide tol. \pm

ペプチドの質量について、実測値から計算された値とペプチド配列から計算された値との許容誤差です。 ユーザー側で装置のスペックや事前に行ったキャリブレーションの結果を基に適正値を判断します。

(12) #¹³C

質量分析装置での測定時、12C のみから構成されるペプチドではなく 13C を含むペプチドを取り込んで いることがあります。その際生じる理論値とのずれを補正するためのパラメーターです。ペプチドの理論値 に対して適応されます。上記(11)の Peptide to.±を TOL、実験値並びに理論値の質量をそれぞれ exp,calc と表現する場合、通常は

TOL > |exp - calc|の時のみをマッチとみなしますが、 この設定値を1とした場合は **TOL > |exp - calc - 1|** もマッチとみなします。 また設定値を2とした場合は上記に加え **TOL > |exp - calc - 2|** もマッチとみなします。

(13) MS/MS tol.±

ペプチドのフラグメントの質量について、実測値から計算された値とペプチド配列から計算された値との 許容誤差です。装置のスペックや事前に行ったキャリブレーションの結果をもとに適正値を判断します。

(14) Peptide charge

通常は使用されないパラメーターです。クエリーデータの中に charge(ペプチドの電荷に関する情報)が 含まれない場合、ここで指定した値が使用されます。ただしほとんどのケースにおいてペプチドの電荷に 関する情報はファイルに含まれていて、その場合ここで指定した値は無視されます。ファイル内で電荷状況 を示す charge 行は、仮に電荷が特定できないケースでも推定値として charge=2+,3+,4+ などの値が 記入されていることが多いため、このパラメーターを使用しなければならないケースはあまりありません。

(15) **Query**

検索 query となる入力データを指定します。アミノ酸配列の並びや組成に関する情報をフィルターとして 利用する事ができます。Sequence Query の文法については

<u>https://www.matrixscience.com/help/sq_help.html</u> または

<u>http://localhost/mascot/help/sq_help.html</u> をご覧ください。

(16) Instrument

フラグメントピークと理論値をマッチングする際、考慮するイオンシリーズやフラグメントピークの電荷に 関する情報が定義されたセット(次頁図)です。MS/MS において発生するフラグメントパターンの内容に 応じて選択して下さい。設定値が変わる事で理論値とのマッチング状況が変わり、MASCOTの Ion Score が変わり、ひいては同定結果も変わってくることがあります。

	Default	ESI QUAD TOF	MALDI TOF PSD	ESI TRAP	ESI QUAD	ESI FTICR	MALDI TOF TOF	ESI 4 SECT	FTMS ECD	ETD TRAP	MALDI QUAD TOF	MALDI QIT TOF	MALDI ISD	CID+ ETD	ETchD	EAD
1+	х	х	х	х	х	х	х	х	x	х	х	х	х	х	х	x
2 ⁺ (pre cursor >2 ⁺)	x	x		x	x	x		x	x	x	x			x	x	x
2+ (pre cursor >3+)																
imm.			x				x	х			x	х				
a	x		x				x	х				x	x		x	x
<u>a*</u>	x		x				х					х			х	
<u>a0</u>			x				x					х			х	
b	х	х	х	х	х	x	х	х			х	Х		х	х	x
<u>b*</u>	х	х	х	х	х	x	х	х			х	х		х	х	
<u>b0</u>		х	х	х	x	x	х	х			х	х		х	х	
<u>c</u>									x	х			х	х	х	x
x																
У	х	х	х	х	x	x	x	х	x	х	х	х	x	х	х	x
<u>у</u> *	х	х		х	х	х	х				х	х		х	х	
<u>y0</u>		х		х	x	х	х				х	х		х	х	
<u>z</u>								х								
<u>z+1</u>									x	х				х	х	x
<u>z+2</u>									x	х			x	х	х	x
yb							х	х			х	х				
уа							х	х			х	х				
y must be sig.																
y must be highest																
d							х									
<u>v</u>							х									
w							х							х	х	x

(17) Start Search

検索を開始します。

(18) Reset Form

パラメーター設定をデフォルト状態に戻します。

5-3. MIS: 検索パラメーター 一覧

MA	TRIX ENCE		Search this site
Home Access Ma	scot Server Help Support 🗹 Traini	ng 🗹 🛛 Monthly n	ewsletter 🗹 About
Access Mascot Server >	MS/MS Ions Search		
MASCOT	MS/MS Ions Search		
(1) Your name	Taklaesu	(2) Email	
(3) Search title	search test 01 20250301		
(4) <u>Database(s)</u>	SwissProt (AA)	>	UP5640_H_sapiens UP589_M_musculus UP625_E_coli_K12 UP9136_B_taurus Nucleic acid (NA) Human_EST Spectral library (SL) NIST_BSA_lonTran
			PRIDE_Contaminants PRIDE_E.coli
(5) Taxonomy	Saccharomyces Cerevisiae (ba	ker's yeast)	~
(6) Enzyme	Trypsin/P V	7) Allow up to	1 V missed cleavages
(8) Quantitation	None		
(9) <u>Crosslinking</u>	None	 Image: A set of the set of the	
(10) <u>Fixed</u> modifications	Display all modifications	> <	1TFA (C-term) 2PropGlyGly (K) 2TFA (C-term) 6C-CysPAT (C) 6C-CysPAT (N-term) Acetyl (C)
(11) <u>Variable</u> modifications	none selected	> <	Acetyl (K) Acetyl (N-term) Acetyl (Protein N-term) Acetyl (S) Alexa488 (Q)
(19) Error tolerant	Automatic second pass search of se	lected modificatio	n classes
(13) Peptide tol. ±	(14) 1.2 Da v # ¹³ C 0 v	(15) MS/MS tol. ±	0.6 Da 🗸
(16) Data file	ファイルを選択選択されていません		
(17) Data format	Mascot generic 🗸		
(18) Instrument	Default 🗸		
(19) Target FDR	1% 🗸		
Machine learning (20)	Refine results with machine learning Use features calculated by Mascot	g (Percolator)	
(91)	DeepLC model for retention times	full hc unmod	fixed mods
(21) (22)	MS2PIP model for spectral similarity		✓
(22)	Start Search	(24)	Reset Form

(1) Your name, (2) Email, (3) Search title

検索結果画面並びに Search log において検索の内容や検索者を確認する際に使用します(下図)。任意の文字列を入力可能です。Email については Email で結果を返すなどの設定をしていない場合、メモ欄の 代わりに使用する事もできます。

J	MATRIX SCIENCE MASCOT Search Results								
U: E· S(M	ser ·mail earch t S data	: itle : file :	Monitor Test DB MS/MS Test Sear test_search.mgf	0 rch					
D	atabas	e :	UP5640_H_sapie	ns 20201007	(100,100 seq	uences; 40),284,240 res	sidues)	
MASCOT search log Version: 2.8.0.1 - mskk (UC2H-LHC6-Z3V8-W62R-K3M8)									157: 🗆
Job#	PID	dbase	User Name	Email	Title				
•									
<u>1242</u>	12096	SwissPi	o][Copy o submit	f raw 03 (C:¥Pr ted from	ogramData¥Matrix	Science¥Mascot	Daemon¥parameters¥default.pa
<u>1241</u>	5016	UP564(_H Monitor Test DB 0		MS/MS	Test Search			
<u>1240</u>	11760	SwissPi	0		Copy o submit	f mgf 02 (C:¥Pr ted from	ogramData¥Matrix	Science¥Mascot	Daemon¥parameters¥default.pa
<u>1239</u>	8376	SwissP	o Monitor Test DB 0		MS/MS	Test Search			

(4) Database(s)

検索対象のデータベースを選択します。データベースは大きく分けると以下の3種類があります。

- AA: Amino Acid,アミノ酸配列
- NA: Nucleic Acid, 核酸配列
- SL: Spectral Library,ピークリスト:過去に測定したペプチドのフラグメントピークデータ

Ctrl キーを押しながらクリックする事で複数のデータベースを選択する事もできます。

(5) Taxonomy

生物種の絞り込みに関する設定です。Taxonomy 設定がされているデータベース(SwissProt など)のみ 適用可能です。設定されていないデータベースに使用した場合、エラーメッセージは出ますが検索は そのまま実行する事ができます。

リストに記載されている生物種はユーザーがカスタマイズする事も可能です。

(6) Enzyme

タンパク質の切断パターンを指定します。

(7) Allow up to

Enzyme 設定について、切断箇所と認定された箇所を見逃し連結したペプチドを作成する事ができますが、何度まで見逃すことを許容するかについての設定です。例えば Trypsin 設定では K,RのC 末端が切断 されます。 EGRNRFPFLSLSQR

という配列があった場合、missed cleavage 設定が0なら

EG**R**

NR

FPFLSLSQR

という3種類のペプチドのみを考慮します。missed cleavageが1の場合、上記に加え

EGRNR

NRFPFLSLSQR

の2種類のペプチドも考慮する対象として追加されます。

(8) Quantitation

定量計算に関する設定項目です。MASCOT では Spectral Counting の 1 種である emPAI についてはここで指定する ことなく結果画面に自動的に表示されます。

この設定は利用の際、事前に設定を準備する必要があります。選択項目のうち、後ろに[**MD**]がついていないものについては MASCOT Server 単独でも計算が可能です。

[MD]が後ろについている項目については計算のために ソフトウェア MASCOT Distiller(計算モジュール搭載)が必 要です。どちらの手法も、定量計算を実施するためのサンプ ル測定と、MASCOT での事前の設定項目の作成が必要にな ります。

詳細は「10-2.Quantitation」をご覧ください。

Quantitation	None	\sim
Crosslinking Fixed nodifications	None iTRAQ 4plex iTRAQ 4plex (protein) iTRAQ 8plex TMT 6plex TMT 2plex TMT 10plex TMT pro 16plex	•
<u>Variable</u> nodifications	DiLeu 4plex 180 multiplex SILAC K+6 R+6 multiplex IPTL (Succinyl and IMID) multiplex	
Peptide tol. ± eptide charge	ICPL duplex pre-digest [MD] ICPL duplex post-digest [MD] ICPL triplex pre-digest [MD] ICPL quadruplex pre-digest [MD] 180 corrected [MD] 15N Metabolic [MD] 15N + 13C Metabolic [MD]	
	SILAC K+6 R+10 [MD]	•

(9) Crosslinking

ペプチドがリンカーまたは共有結合で結合した測定データを検索する事ができます。この設定についても Quantitation 同様何の準備もなく利用できるものではありません。計算を行うためには、それに 合わせた測定(リンカーを添加したりSS結合を切断する還元処理を行わないなど)を予め行っておく必要 があるほか、様々な設定を事前に行いパッケージ化して名称を設定した項目を検索時に指定する事に なります。詳細は「10-3.Crosslink」をご覧ください。

(10) Fixed Modification, (11) Variable Modification

修飾に関する設定です。設定した項目について、対象アミノ酸の質量の変化を考慮します。 (10)の Fixed は対象のすべてのアミノ酸について指定した内容に質量が変更します。一方 (11)の Variable は修飾が つくパターンとつかないパターンの両方を考慮します。両方を考慮する分融通が利くように思えますが、 検索時間が長くなる事と同定判定で不利になり同定しにくくなるというデメリットがあります。修飾を指定 する場合、右側にあるリストから該当項目を選び、真ん中にある < ボタンを押して Fixed または Variable modification 設定項目として指定します。

Fixed modifications	none selected	> <	Acetyl (K) Acetyl (N-term) Acetyl (Protein N-term) Amidated (C-term)	•
<u>Variable</u> modifications	Display all modifications	> <	Amidated (Protein C-term) Ammonia-loss (N-term C) Carbamidomethyl (C) Carbamidomethyl (N-term) Carbamyl (K) Carbamyl (N-term) Carboxymethyl (C)	•

またリストに初期表示される修飾は使用可能な設定のごく一部で、頻度の低い項目については初期に 表示されないようになっています。それらのその他多くの設定を表示させるには、画面中央にある 「**Display all modifications**」にチェックを入れる事で右側のリストが変化し、MASCOT に登録されてい るすべての修飾がリストに表示されます。

(12) Error tolerant

1)想定外の修飾、2)非特異的切断を伴うペプチド、3)アミノ酸残基置換の3つを検出する事ができる 2 段階検索です。詳細は「**10-4. Error Tolerant Search**」の項目をご覧ください。

(13) Peptide tol.±

ペプチドの質量について、実測値から計算された値とペプチド配列から計算された値との<mark>許容誤差</mark>です。 ユーザー側で装置のスペックや事前に行ったキャリブレーションの結果を基に適正値を判断します。

(14) #13C

質量分析装置での測定時、12C のみから構成されるペプチドではなく 13C を含むペプチドを取り込んで いることがあります。その際生じる理論値とのずれを補正するためのパラメーターです。ペプチドの理論値 に対して適応されます。上記(11)の Peptide to.±を TOL、実験値並びに理論値の質量をそれぞれ exp,calc と表現する場合、通常は

TOL > |exp - calc| の時のみをマッチとみなしますが、

この設定値を 1 とした場合は TOL > |exp - calc - 1| もマッチとみなします。 また設定値を 2 とした場合は上記に加え TOL > |exp - calc - 2| もマッチとみなします。

(15) MS/MS tol. \pm

ペプチドのフラグメントの質量について、実測値から計算された値とペプチド配列から計算された値との 許容誤差です。ユーザー側で装置のスペックや事前に行ったキャリブレーションの結果を基に適正値を判断 します。

(16) Data file

検索 query となる入力データを指定します。WEB ブラウザで検索を行う場合、raw データではなく判読 可能なテキストまたは XML フォーマットに変換されたデータを指定する必要があります。
(17) Data format

検索にかける query データのファイルフォーマットとして、 「mascot generic (.mgf)」か、「mzML (.mzML)」かを選択します。

Data format	Mascot generic 🗸
Instrument	Mascot generic
Target FDR	mzML (.mzML)

(18) Instrument

フラグメントピークと理論値をマッチングする際、考慮するイオンシリーズやフラグメントピークの電荷に 関する情報が定義されたセット(下図)です。MS/MS において発生するフラグメントパターンの内容に 応じて選択して下さい。設定値が変わる事で理論値とのマッチング状況が変わり、MASCOT の Ion Score が変わり、ひいては同定結果も変わってくることがあります。なおカスタマイズにより、Machine learning に関する設定を組み込むことも可能です。

	Default	ESI QUAD TOF	MALDI TOF PSD	ESI TRAP	ESI QUAD	ESI FTICR	MALDI TOF TOF	ESI 4 SECT	FTMS ECD	ETD TRAP	MALDI QUAD TOF	MALDI QIT TOF	MALDI ISD	CID+ ETD	ETchD	EAD
1+	х	x	x	х	x	х	х	х	х	х	х	х	х	х	х	х
$\frac{2^{+}}{(\text{pre})}$ $\frac{\text{cursor}}{>2^{+}}$	x	x		x	x	x		x	x	x	x			x	x	x
2 ⁺ (pre cursor >3 ⁺)																
imm.			х				х	х			x	x				
a	х		х				х	х				х	x		x	x
<u>a*</u>	х		х				х					х			х	
<mark>a0</mark>			х				х					х			x	
b	х	х	х	х	x	х	х	х			х	х		х	х	х
<u>b*</u>	х	х	х	х	x	х	х	х			х	х		х	х	
<u>b0</u>		х	х	х	x	х	х	х			х	х		х	х	
C									х	х			х	х	х	x
x																
<u>y</u>	х	х	х	х	x	х	х	х	х	х	х	х	х	х	х	x
<u>y*</u>	х	х		х	x	х	х				х	х		х	х	
<u>y0</u>		х		х	x	х	х				х	х		х	x	
Z								х								
<u>z+1</u>									х	х				х	x	х
<u>z+2</u>									х	х			х	х	х	х
yb							х	х			х	х				
ya							х	х			х	х				
y must be sig.																
y must be highest																
d							x									
v							х									
w							х							х	х	x

(19) Target FDR

同定基準となる FDR を設定します。通常は デフォルト値である 1%が採用されます。

(20) Machine learning

機械学習アルゴリズムによる結果の精査と最適化(refinement)を実施します。ショットガン解析を実施している場合、通常はチェックを入れて実施してください。

(21) DeepLC model

ペプチド配列から保持時間を予測するプログラム「DeepLC」を利用し、結果の精査と最適化(refinement) における要素の一つ(feature)として利用します。設定項目では計算に利用する数値が準備されたモデルを 選択します。モデルはトレーニングデータセットの内容に基づいて名称がつけられています。

利用するためには、保持時間情報が各 query 内に書き込まれた状態で MASCOT に対して検索を行う必要があります(Mascot Distiller を利用する事で、その要件に対応させる事ができます)。

(22) MS2PIP model

ペプチド配列から MS2 スペクトルを予測するプログラム MS2PIP を利用し、結果の精査と最適化 (refinement)における要素の一つ(feature)として利用します。設定項目では計算に利用する数値が準備されたモデルを選択します。モデルはトレーニングデータセットの内容に基づいて名称がつけられています。

(23) Start Search

検索を開始します。

(24) Reset Form

パラメーター設定をデフォルト状態に戻します。

5-4. パラメーターの中でカスタマイズ可能な項目

検索パラメーターの中にはカスタマイズをして利用する事ができる項目があります。

Databases

- Taxonomy
- Enzyme
- Quantitation
- Crosslinking
- **Modification**
- Instrument
- Refinement 実施の各種条件など

ほとんどの設定は Configuration Editor (Home -> Configuration Editor)で行います。各設定画面に ついては「**13. MASCOT Server のカスタマイズ**」をご覧ください。

Instrument については、refinement の内容も併せて定義をする事ができます。質量分析装置メーカーに付属する解析ソフトウェアからMASCOTを利用する際、instrument 項目を選ぶだけで、refinement の実施の有無や DeepLC/MS2PIP のモデルを指定するように設定する事が可能です。

また上記の内容とは別に、refinement に利用するプログラムのモデルについてもカスタマイズが可能です。

なお設定変更が可能なのは製品版(ローカル版)MASCOT Server のみです。インターネット上で公開 されている試用サーバーでは変更ができません。MASCOT Server をカスタマイズしてご利用頂きたい 場合は製品版の購入をご検討ください。

5-5. Database

MASCOT では検索対象として最適なデータベースを自動的に選択するような仕組みはありません。 ユーザーが目的に応じて適切なデータベースを自身で選択する必要があります。 MASCOT で検索可能なデータベースは大きく分けて3種類あります。

AA: Amino Acid : アミノ酸配列

NA: Nucleic Acid : 核酸配列

SL: Spectral Library: ピークリスト/過去に測定したペプチドのフラグメントピークデータ

データベースは「Database Manager」で既存データベースについて最新版への更新を行ったり、新規 データベースの追加を行ったりする事ができます。新規データベースの追加については、MASCOT 側で 予めファイル取得先やデータベース諸設定を定義されたものから選択する方法と、自身で準備した FASTA ファイルをセットする方法があります。Database manager については別紙の設定資料を準備して おりますのでそちらをご覧ください。

https://www.matrixscience.co.jp/supportpdf/MASCOTServer_ver26_sequencedbmanage.pdf MASCOT ではデータベースにないエントリーを同定する事はできませんが、必要以上にエントリー数の 多いデータベースを選択してしまうと同定基準値が高くなってしまい、結果的にペプチド配列やタンパク質 の同定がより難しくなります。必要十分な検索範囲のデータベースを選択する必要があります。

使用するべきデータベースが良くわからない場合、最初の選択として「SwissProt」を選択して頂く事を お勧めします。より網羅的な解析を希望する場合、データベース名が UP で始まり生物種名が名称内に 含まれる、Uniprot系のデータベースの使用をセットして利用する事もお勧めします。

以下、MASCOT が Predefined として準備しているデータベースのうち代表的なものについて説明を いたします。

SwissProt

https://www.expasy.org/sprot/

Uniprot データベースの中の1つで、EBI(European Bioinformatics Institute) と SIB (Swiss Institute of Bioinformatics)により共同運用されたタンパク質配列のデータベース。各エントリーに対して、 機能・ドメイン構造・修飾・バリアント・論文情報・他データベースへのリンクなど、精査されたアノテーション 情報が手動で付与されています。配列の冗長性はできるだけ無いように調整されていて、2025年3月時 点で約 57 万 件のデータが登録されています。このエントリー数は長期に渡りあまり変動がありません。

■ Uniprot → MASCOT データベースでは UPN_Bと表記 (N は番号、B は生物種)

https://www.uniprot.org/

手動アノテーションされた上記 SwissProt に加え、自動かつ精査無しのデータベース **TrEMBL** を 併せたデータベースです。TrEMBL は SwissProt に比べ圧倒的にエントリー数が多く2025 年3月版で **252,633,200** 件のデータが登録されています。SwissProt のみのデータベースに比べ配列のカバー範囲 が広く、**SwissProt でマッチしなかった場合の次の選択肢に最適**です。ただし Uniprot すべてのエントリー では件数が多すぎるので、生物種を限定したデータベースを準備してそれに対して検索をかける事を推奨 しています。

詳細な説明並びにデータベースをセットする具体的な方法については以下日本語資料 「検索対象の生物種を予め絞り込んだ UniprotKB データベースの作成手順」をご覧ください。 https://www.matrixscience.co.jp/supportpdf/Uniprotdb_20200915.pdf

■ NCBIprot (旧名称 NCBInr)

NCBI(National Center for Biotechnology Information)で公開されているタンパク質データベース 「nr」です。「nr」とは「non-redundant」の略ですが、実際にはほぼ同じ配列のデータが数多く登録されて おり、それが膨大なエントリー数の要因となっています。かつて網羅的な探索用のデータベースとして SwissProtの次の選択肢として弊社にて使用を推奨していました。しかし現在は冗長性膨大なエントリー数 により MASCOT Server での更新やセットアップが困難になってしまった事から、使用を推奨して おりません。代わりに上述の Uniprot の使用をお勧めしています。

■ XXXXX_EST (Human_EST など)

EST とは Expressed Sequence Tag の事で、cDNA ライブラリの部分配列にあたります。mRNA レベルでの塩基配列情報が含まれているデータベースで、タンパク質データベースでは見つからないよう なペプチド配列などが検出される事が期待されます。一方でマッチング後に次のステップに進みにくい ため、目的をもって利用される事をお勧めします(機能が不明な状態でも得られた配列情報を使って別の 解析を進める、など)。

■ NIST_XXXX_YYYY (NIST_Human_HCD など)

ピークリスト(過去に測定したペプチドのフラグメントピークの情報)データベースで、**NIST**(National Institute of Standards and Technology)にて公開しているものです。

■ PRIDE_XXXXXX (PRIDE_Human など)

ピークリスト(過去に測定したペプチドのフラグメントピークの情報)データベースで、data repository site の **PRIDE**(Proteomics IDEntification database)にて公開しているものです。

その他のデータベースについての説明は以下のページをご参照ください。

https://www.matrixscience.com/help/database_help.html

5-6. Search form defaults

「Access Mascot Server」ページの一番下に「Search form defaults」という項目があります(下図)。 「preferred default settings」リンクをクリックし開いた画面でパラメーターをセットし保存すると、各検 索方法の search form 画面を開いた際、設定した内容がデフォルトの選択設定として選ばれた状態で画面 が開きます。

MATRIX		
SCIENCE	Home Mascot da	tabase search Products Technical support Training N
Home Access Mascot Server Database search help Mascot database search > Access Mascot Server Server	Access Mascot Ser	ver Database search help
Access Mascot Server	Mascot database searcr	> Access Mascot Server > Set Search Defaults
You can submit searches to this Mascot Server using the w This is ideal for interactive searches, where you are experi parameters. For automated searches of batches of files, tr Mascot Daemon on a Windows PC can be found on the hon	Set Mascot s	earch form defaults
searches from <u>Mascot Distiller</u> and many instrument data s applications.	Database	contaminants cRAP
Peptide Mass Fingerprint		SwissProt
The experimental data are a list of peptide mass values fro specific enzyme such as trypsin.		UP186698_X_laevis
Perform search Example of results report More informat	Taxonomy	All entries 🗸
Sequence Query	Enzyme	Trypsin 🗸
One or more peptide mass values associated with informat sequence strings, amino acid composition information, MS,	Allow up to	1 V missed cleavages
super-set of a sequence tag query. Perform search Example of results report More informat	Fixed	Carbamidomethyl (C)
	modifications	Carbamidomethyl (N-term)
MS/MS Ions Search		Carbamyl (N-term)
Identification based on raw MS/MS data from one or more		Carboxymethyl (C)
Perform search Example of results report More informat	Variable	mTRAQ:13C(6)15N(2) (N-term)
Search form defaults	modifications	mTRAQ:13C(6)15N(2) (Y)
Save your preferred default setting as a browser cookie.		
		Oxidation (M)
L		
		©2021 Matrix Science Terms of use

6. 検索結果画面:PMF

この章では MASCOT PMF 検索における結果画面について説明します。

6-1. 表示例で使用している検索について

PMFの検索例として MASCOT Server内に存在する以下の検索結果を利用します。
[公開サーバー] https://www.matrixscience.com/cgi/master_results.pl?file=../data/F981122.dat
[ローカルサーバー] http://localhost/mascot/cgi/master_results.pl?file=../data/F981122.dat
18 のピークを含んだ query(左下)で、以下のようなパラメーター設定(右下)を行った検索です。
同定されるタンパク質は「PML HUMAN」となります。

	∂
	814.430
	958.350
	1000.330
	1165.390
	1182.440
	1191.500
	1300.470
	1320.400
	1348.410
	1355.530
	1423.520
	1426.570
	1624.740
	2265.110
	2544.410
	2550.300
C	2653.390

設定項目	設定値
Database	SwissProt
Enzyme	Trypsin/P
Allow up to	2
Taxonomy	all
Peptide tol,±	0.2 Da
Mass Values	MH+

6-2. 表示内容の詳細: summary 画面

6-2-1. 展開しない状態での画面概要

URLをWEBブラウザで指定し結果画面を開くと次頁のような画面が現れます。画面内の赤線で囲われた各パーツで記載されている内容について、以降順に説明します。

MATRIX Mascot Search Results 6-2-2 ヘッダー部分
User : Email : Search title : Peptide Mass Fingerprint Example Database : SwissProt 2019 10 (561356 sequences; 201858328 residues) Timestamp : 9 Jan 2020 at T1:23:29 GMT Top Score : 185 for PML_HUMAN, Protein PML OS=Homo sapiens 0X=9606 GN=PML PE=1 SV=3
Mascot Score Histogram 6-2-3 Score Histogram
Protein score is $-10*Log(P)$, where P is the probability that the observed match is a random event. Protein scores greater than 70 are significant (p<0.05).
V HUR 120 150 200
Protein Score Concise Protein Summary Report 6-2-4 表示内容の変更[Format As]
Format As Concise Protein Summary > Help Significance threshold p< 0.05 Max. number of hits AUTO Preferred taxonomy All entries >
Re-Search All Search Unmatched 6-2-5 再検索
I. PML HAMN Mass: 97489 Score: 185 Expect: 1.8e-013 Matches: 16 Protein PML 0S=Homo sapiens 0X-9806 GNEPML PE=1 SV-3 6-2-6 同定タンパク貸の情報 BECA.ROSS Mass: 37935 Score: 49 Expect: 6.7 Matches: 5 Protein RecA OS=Roseiflexus casterholzii (strain DSM 13941 / HL08) 0X-383372 GNE-recA PE=3 SV=1 JESA_PYENV Mass: 14588 Score: 47 Expect: 11 Matches: 4 Translation initiation factor 5A OS=Pyrobaculum neutrophilum (strain DSM 2338 / JOM 9278 / V24Sta) 0X-444157 GN=eIF5A PE=3 SV=1 NADO CHLL2 Mass: 22438 Score: 42 Expect: 20 Matches: 4 Probable nicotinate-nucleotide adenvlyItransferase 0S=Chlorobium limicola (strain DSM 245 / NBRC 103803 / 6330) 0X=290315 GN=nadD PE=3 SV=1 NATO CHLL2 Mass: 23926 Score: 42 Expect: 39 Matches: 4 Inactive ribonuclease-like protein 10 GE=quue caballus 0X+9786 GN=NASEID PE=2 SV=2 MRC 1D1L0 Mass: 2594 Score: 42 Expect: 39 Matches: 5 UDP-N-acetylmuramate-'L-alanine ligase 0S=Idiomarina loihiensis (strain ATOC BAA-735 / DSM 15497 / L2-TR) 0X=283942 GN=murC PE=3 SV=1 TROVE HAMAN Mass: 13927 Score: 40
LUTC GEOSM Mass: 26930 Score: 34 Expect: 2.4e+002 Matches: 4 Lactate utilization protein C 0S=Geobacillus sp. (strain WCH70) 0X=471223 GN=lutC PE=3 SV=1 RSMH PARDP Mass: 34298 Score: 34 Expect: 2.4e+002 Matches: 4 Ribosomal RNA small suburit methyltransferase H 0S=Paracoccus denitrificans (strain Pd 1222) 0X=318586 GN=rsmH PE=3 SV=1 PHEA_MYCB0 Mass: 33613 Score: 34 Expect: 2.5e+002 Matches: 4 Prephenate dehydratase OS=Mycobacterium bovis (strain ATCC BAA-935 / AF2122/97) 0X=233413 GN=pheA PE=1 SV=1 PHEA_MYCBP Mass: 33613 Score: 34 Expect: 2.5e+002 Matches: 4 Prephenate dehydratase 0S=Mycobacterium bovis (strain BCG / Pasteur 1173P2) 0X=410289 GN=pheA PE=3 SV=1 PHEA_MYCIA Mass: 33613 Score: 34 Expect: 2.5e+002 Matches: 4 Prephenate dehydratase 0S=Mycobacterium bovis (strain BCG / Pasteur 1173P2) 0X=410289 GN=pheA PE=3 SV=1 PHEA_MYCIA Mass: 33613 Score: 34 Expect: 2.5e+002 Matches: 4 Prephenate dehydratase 0S=Mycobacterium bovis (strain BCG / Pasteur 1173P2) 0X=410289 GN=pheA PE=3 SV=1 PHEA_MYCIA Mass: 33613 Score: 34 Expect: 2.5e+002 Matches: 4 Prephenate dehydratase 0S=Mycobacterium tuberculosis (strain ATCC 25177 / H37Ra) 0X=419947 GN=pheA PE=3 SV=1 PHEA_MYCIA PHEA_MYCIA PHEA_SV=1
Search Parameters
Type of search : Peptide Mass Fingerprint Enzyme : Trypsin/P Mass values : Monoisotopic Protein Mass : Unrestricted Peptide Mass Tolerance : ± 0.2 Da Peptide Charge State : 1+ Max Missed Cleavages : 2 Number of queries : 18
Mascot: http://www.matrixscience.com/

Search title : Peptide Mass Fingerprint Example Database : SwissProt 2019_10 (561356 sequences; 201858328 residues) Timestamp : 9 Jan 2020 at 11:23:29 GMT Top Score : 185 for PML_HUMAN, Protein PML OS=Homo sapiens OX=9606 GN=PML PE=1 SV=3	User Email Search title Database Timestamp Top Score	: : : Peptide Mass Fingerprint Example : SwissProt 2019_10 (561356 sequences; 201858328 residues) : 9 Jan 2020 at T1:23:29 GMT : 185 for PML_HUMAN, Protein PML OS=Homo sapiens OX=9606 GN=PML PE=1 SV=3
---	---	---

「5-3 PMF 検索パラメーター 一覧」も併せてご覧ください。

User	: パラメーター「 your name 」で指定した内容
Email	: パラメーター「 Email 」で指定した内容
Search title	: パラメーター「Search title」で指定した内容
Database	: 検索対象としたデータベースとバージョン、登録件数と総残基数
Taxonomy	:パラメーター「 Taxonomy 」で指定した生物種(指定しているときのみ)。
	生物種限定時の登録エントリー数も表示
Timestamp	:検索開始時間
Top Score	: 最も高いスコアとなったタンパク質のスコア、Accession, Description

6-2-3. Score Histogram

横軸が MASCOT Score,縦軸はそのスコアを持つエントリーの数です。

上記図内の赤枠で囲われた箇所(70)が同定基準値で、同定基準値より高いスコアを持つタンパク質が MASCOT で判定された「同定タンパク質」となります。

同定基準値は、グラフの緑の網掛けゾーン一番右側に対応します。グラフの緑の網掛けより右側に タンパク質が存在するとき同定タンパク質が見つかったことを意味し、逆に最もスコアが高いタンパク質も 緑の網掛けの領域を脱する事が出来なかった場合は同定タンパク質が見つからなかったことを意味します (次頁図)。同定タンパク質が見つかった場合は検索成功で、同定内容について検証する作業に入ります。 一方同定タンパク質が見つからなかった時は入力データや指定パラメーターを見直して同定できなかった 理由を検証するか、新たな測定を実施して再度同定を試みる事をお勧めします。

6-2-4. 表示内容の変更 [Format As]

Format As	Concise Protein Summary ~	<u>Help</u>
	Significance threshold p< 0.05	Max. number of hits AUTO
	Preferred taxonomy All entries	~

表示 Summary 形式	: 結果画面のフォーマットを変更したり、結果ファイルの export を行います。
	Protein Summary / Concise Protein Summary / Export Search Results
Significance threshol	d : 同定基準の p value(このケースでは Expect と同じとお考え下さい)を
	指定します。小さいほど同定基準が厳しい事になります。
Max. number of hits	:表示するタンパク質数、推奨は"AUTO"。
Preferred taxonomy	: <mark>優先表示させる生物種</mark> 。タンパク質の 1 つのエントリーに数種の
	エントリーが統合されていることがあります。検索パラメーター「taxonomy」
	の絞り込みはエントリーに登録されている複数生物種すべてに対応する事が
	できる一方、表示される生物種はエントリー時にデータベース側で定められた
	デフォルトの1種類のみです。結果、パラメーターで指定した生物種と明らかに
	異なる生物種由来と見受けられるエントリーが結果に表示されることがありま
	す。Preferred taxonomy の設定を行うと、優先して表示させる生物種名を
	指定した生物種に切り替える事ができます。

各種項目を変更後、"Format As"ボタンを押すことで設定内容に基づいて結果画面表示が切り替わり ます。

6-2-5. 再検索: Research all, search unmatched

Re-Search All

Search Unmatched

再検索を実施するボタンです。「Re-Search All」は入力データ全てを使った、「Search Unmatched」は 同定基準を超えたタンパク質にマッチしたものを除いた全てのピークを使って再検索を行います。

6-2-6. 同定タンパク質の情報

1.	PML HUMAN	Mass: 97489	Score: 185	Expect: 1.8e-013 Matches: 16
	Protein PML	OS=Homo sapiens	OX=9606 GN=PML	L PE=1 SV=3
	RECA ROSCS	Mass: 37935	Score: 49	Expect: 6.7 Matches: 5
	Protein RecA	OS=Roseiflexus	castenholzii ((strain DSM 13941 / HLO8) OX=383372 GN=recA PE=3 SV=1
	<u>IF5A PYRNV</u>	Mass: 14588	Score: 47	Expect: 11 Matches: 4
	Translation	initiation facto	r 5A OS=Pyroba	aculum neutrophilum (strain DSM 2338 / JCM 9278 / V24Sta) OX=
	NADD CHLL2	Mass: 22438	Score: 44	Expect: 20 Matches: 4
	Probable nic	otinate-nucleoti	de adenylyltra	ansferase OS=Chlorobium limicola (strain DSM 245 / NBRC 10380
	RNS10 HORSE	Mass: 23926	Score: 42	Expect: 39 Matches: 4
	Inactive rib	onuclease-like p	rotein 10 OS=E	Equus caballus OX=9796 GN=RNASE10 PE=2 SV=2
	MURC IDILO	Mass: 52994	Score: 42	Expect: 39 Matches: 5
	UDP-N-acetyl	muramateL-alan	ine ligase OS=	-Idiomarina loihiensis (strain ATCC BAA-735 / DSM 15497 / L2-
	TRGV8 HUMAN	Mace: 13327	Score: 41	Expect: 41 Matches: 3

検索した結果、スコアが高かったタンパク質について表示されます。表示内容は以下の通りです。

Accession	: データベースの ID が表示されます。ハイパーリンクになっていてクリックするとより
	詳しい情報が記載されている「 Protein View 」の画面が開きます。Protein Viewの
	詳細は 6-3 をご覧ください。
Mass	: タンパク質の質量で、データベースに登録されている配列情報から計算。
Score	: MASCOT Score。赤字の表示は同定基準を超えている事を表します。高いほど
	理論値と実測値がよりよくマッチしていることを示します。
Expect	: Score と同定基準値をもとに算出された値。ランダムマッチだった場合に検索した
	データベースからどれくらいのエントリーが見つかってくるかを表す「期待値」です。
	同定基準を超えている時、値が 0.05(デフォルト設定の場合)より小さくなります。なお
	同定基準値は「Significance threshold p<」の値と連動します。期待値についての
	詳細は「 8-4.同定タンパク質:マッチングとスコア、同定基準値、期待値 」をご覧下さい。
Matches	: マッチしたピーク数。
Description	: データベース各エントリーのヘッダー行に記載されている、タンパク質の機能に関する
	情報。

6-2-7. Search parameters

Search Parameters

検索時に指定したパラメーター。詳細は「5-1.PMF:検索パラメーター 一覧」をご参照ください。

Type of search	: MASCOT 3 つの検索手法のうち、どれか。
Enzyme	:切断パターン。
Fixed modification	: 必ず質量置換する修飾設定 (設定時のみ。上記例図には含まれていない)。
Variable modification	: 質量置換する/しないケースを想定する修飾設定
	(設定時のみ。上記例図には含まれない)。
Mass values	: 各種質量計算に使うアミノ酸の質量が「Monoisotopic」か「Average」か。
Protein Mass	: タンパク質質量の上限値
Peptide Mass Toleranc	e:ペプチドの質量マッチングにおける誤差範囲
Peptide Charge State	: ピークの電荷が MH+か Mr か M-H- か
Max Missed Cleavages	: Enzyme 設定について、切断箇所と認定された箇所を見逃し連結した
	ペプチドを作成する事ができるが、何度まで見逃すことを許容するかに
	ついての設定
Number of queries	: 入力データのピーク数

6-3. Protein View

Summary 画面の中でタンパク質名の箇所がハイパーリンクになっています。このハイパーリンクを クリックすると、マッチしたタンパク質についてより詳しい情報が記されている「Protein View」の画面と なります(次頁図)。

Protein View: PML_HUMAN				
Protein PML OS=Homo sapiens OX=9606 GN=PML PI	Protein PML OS=Homo sapiens OX=9606 GN=PML PE=1 SV=3			
Database: SwissProt Score: 185 Expect: 1.8e-013 Monoisotopic mass (Mr): 97489 Calculated p1: 5.88 Taxonomy: Home capients				
Sequence similarity is available as an NCBI BLAST search of PML_HU	MAN against nr.			
Search parameters				
Enzyme:Trypsin/P: cuts C-term side of KR.Mass values searched:18Mass values matched:16				
Protein sequence coverage: 23%	7			
Matched peptides shown in bold red .				
1 MEPAPARSPR POODPARPOE PTMPPPETPS EGROPSPSPS PTERAPAS 51 EFOFLRCQQC QAEAKCPKLL PCHTLCSGC LEASGMQCPI COAFWPLG 101 TPALDNVFFE SLORRLSVYR QIVDAQAVCT RCKESADFWC FECEQLLC 151 CFEAHOWFLK HEARPLAELR NQSVREFLDG TAKTNNIFCS NPNRTPT 201 SIYCRGCSKP LCCSCALLDS SHSELKCDIS AEIQORQEEL DAWTOALO 251 DSAFGAVHAQ MHAAVGQLGR ARAETEELIR ERVRQVVAHV RAQERELL 301 VDARYQRDYE EMASRLGRLD AVLQRIRIGS ALVQRMKCYA SDQEVLDM 351 FLRQALCRLR CEEPOSLQAA VRTDGFDEFK VALQDLSSCI TQGKDAAV 401 KASPEAASTP RDPIDVDLFE EAERVKAQVQ ALGLAEAQFM AVVQSVFG 451 FVPVYAFSIK GPSYGEDVSN TITAQKRKCS QTQCPRKVIK MESEGKE 501 LARSSPEOPR PSTSKAVSPP HLDCPPSPRS PVIGSEVFLP NSNRVASG 551 EAEERVVVIS SSEDSDAENS SSRELDDSSS ESSDLQLEGP STLRVLDEE 601 ADPQAEDPL VFFDLKIDNE TQKISQLAAV NRESKFRVVI QPEAFSSI 651 KAVSLEVGLQ HFISFISSMR RPILACYKLW GPGLPNFFRA LEDINRLM 701 QEAISGFLAA LELIRERVPG ASSFKLINLA QTYLARNMSE RSAMAAVL 751 RDUCRLLEVS PGPQLAQHVY FFSSLQCFAS LQPLVQAAVL PREARLL 801 HNVSFMELLS AHRDRQGGL KKYSRYLSLQ TITLPPAQPA FNLQALGT	IE LD LK LK JT LQ A AR AR AR SI SI			
851 EGLLEGPALA RAEGVSTPLA GRGLAERASQ QS				
Unformatted sequence string: <u>882 residues</u> (for pasting into other ap	plications).			
Sort by eresidue number O increasing mass O decrear Show ematched peptides only predicted peptides also	ising mass			
Start - End Observed Mr(expt) Mr(calc) Delta	M Peptide			
34 - 44 1182.4400 1181.4327 1181.5677 -0.1349 45 - 56 1423.5200 1422.5127 1422.6779 -0.1652 161 - 170 1191.5000 1190.4927 1190.6520 -0.1592 308 - 315 1000.3300 999.3227 999.3967 -0.0740 319 - 325 814.4300 813.4227 813.4708 -0.0481 359 - 372 1624.7400 1623.7327 1623.6692 -0.1365 361 - 372 1355.5300 1354.5227 1354.6841 -0.1613 361 - 382 2550.3000 2549.2927 2549.2510 0.0417 373 - 380 958.3500 957.3427 957.4080 -0.0653 491 - 500 1165.3900 1164.3827 1145.6081 -0.1792 516 - 529 1426.5700 1425.5627 1425.7365 -0.1737 530 - 555 2653.3900 2652.3827 2652.2780 0.1048 574 - 594 2265.1100 264.1027 264.0292 0.0735 595 - 616 2544.4100 2543.4027 2543.2908 0.1120 No match to: 1320.4000, 1348.4	R. OFSPSPERTER. A R. APASEEEFQFLR. C R. APASEEEFQFLR. C K. HEARPLAELR. N R. DYEEMASR. L R. DQEEPQSLQAAVR. T R. QEEPQSLQAAVR. T R. QEEPQSLQAAVR. T R. CQEEPQSLQAAVR. T R. TDGFDEFK.V R. TDGFDEFK.V K. MESEGKEAR. L R. SSPEQPRPSTSK.A K. AVSPFHLDGPPSPR. S R. SPVIGSEVFLPNSNHVASGAGEAEER.V R. ELDDSSSESSDLQLEGPSTLR.V R. VLDENLADPQAEDRPLVFFDLK. I			
Boo 1200 1600 2000 2400 2800 RMS error 90 ppm Mass (Da)	E -50 -100 800 1200 1600 2000 2400 2800 RMS error 90 ppm Mass (Da)			
ID PML_HUMAN Reviewed; 882 AA. AC P29590; E9PBR7; P29591; P29592; P29593; Q00755; Q1595 AC Q96541; Q9BFW2; Q9BWP7; Q9BZX6; Q9BZX7; Q9BZX8; Q9BZX	9; Q59FP9; Q8WUAO; 9; Q9BZYO; Q9BZY2;			

次頁以降、青色で囲われた各表示領域についてより詳しく説明します。

Protein View: PML_HUMAN			
Protein PML OS=Homo sapiens OX=9606 GN=PML PE=1 SV=3			
Database: Score: Expect: Monoisotopic mass (M.):	SwissProt 185 1.8e-013 97489		
Calculated pI: 5.88 Taxonomy: Homo sapiens Sequence similarity is available as an NCBI BLAST search of PML HUMAN against n			

ページの最初にタンパク質の Acession と Description が最初に表示されます。続いて以下の情報が表示されます。

Database	: 使用したデータベース名。
Score	: MASCOT Score。
Expect	: Scoreと同定基準値をもとに算出された値。同定基準を超えている時、
	Expect = 0.05 となる。Expect が 0.05 より小さい時同定。
Monoisotopic mass (Mr): データベースの配列から計算されたタンパク質の質量。
Calculated pI	: データベースの配列から計算された予測等電点。
Taxonomy	:生物種。

また該当タンパク質の配列を、NCBIの BLAST(配列相同性検索プログラム)実行するためのリンクが 表示されます。

Search parameters

Enzyme:Trypsin/P: cuts C-term side of KR.Mass values searched:18Mass values matched:16

Enzyme	:切断パターン。
Mass values searched	: クエリーのピーク数。クエリーに強度情報が含まれている場合、
	クエリーセットを様々なパターンに組み合わせてマッチングスコアを検証
	しますが、クエリーが少ない組み合わせが採用された場合はその時の
	ピーク数が表示されます。
Mass values matched	: 理論値とマッチしたピーク数。

Protein sequence coverage: 23%					
Match	Matched peptides shown in bold red .				
1	MEPAPARSPR	POODPARPOE	PTMPPPETPS	EGROPSPSPS	PTERAPASEE
51	EFQFLRCQQC	QAEAKCPKLL	PCLHTLCSGC	LEASGMQCPI	CQAPWPLGAD
101	TPALDNVFFE	SLQRRLSVYR	QIVDAQAVCT	RCKESADFWC	FECEQLLCAK
151	CFEAHQWFLK	HEARPLAELR	NQSVREFLDG	TRKINNIFCS	NPNHRTPTLT
201	SIYCRGCSKP	LCCSCALLDS	SHSELKCDIS	AEIQQRQEEL	DAMTQALQEQ
251	DSAFGAVHAQ	MHAAVGQLGR	ARAETEELIR	ERVRQVVAHV	RAQERELLEA
301	VDARYQRDYE	EMASRLGRLD	AVLORIRTGS	ALVQRMKCYA	SDQEVLDMHG
351	FLRQALCR <mark>LR</mark>	OEEPOSLOAA	VRTDGFDEFK	VRLQDLSSCI	TQGKDAAVSK
401	KASPEAASTP	RDPIDVDLPE	EAERVKAQVQ	ALGLAEAQPM	AVVQSVPGAH
451	PVPVYAFSIK	GPSYGEDVSN	TTTAOKRKCS	QTQCPRKVIK	MESEEGKEAR
501	LARSSPEOPR	PSTSKAVSPP	HLDGPPSPRS	PVIGSEVFLP	NSNHVASGAG
551	EAEERVVVIS	SSEDSDAENS	SSRELDDSSS	ESSDLQLEGP	STLRVLDENL
601	ADPQAEDRPL	VFFDLKIDNE	TQKISQLAAV	NRESKFRVVI	QPEAFFSIYS
651	KAVSLEVGLQ	HFLSFLSSMR	RPILACYKLW	GPGLPNFFRA	LEDINRLWEF
701	QEAISGFLAA	LPLIRERVPG	ASSFKLKNLA	QTYLARNMSE	RSAMAAVLAM
751	RDLCRLLEVS	PGPQLAQHVY	PFSSLQCFAS	LOPLVQAAVL	PRAEARLLAL
801	HNVSFMELLS	AHRRDRQGGL	KKYSRYLSLQ	TTTLPPAQPA	FNLQALGTYF
851	EGLLEGPALA	RAEGVSTPLA	GRGLAERASQ	QS	

続いてタンパク質全長に対してマッチしたペプチドがどの部位にあたるのか、またその割合についての 情報が表示されます。Coverage とは、全長に対するマッチペプチド残基数の割合です。マッチした ペプチド部分が赤の太字で表現されています。

Unformatted sequence string: 882 residues (for pasting into other applications).					
Sort by O residue Show O matched	 ○ increasing mass ○ predicted peptides also 		O decreasii	ng mass	
Start - End	Observed	Mr(expt)	Mr(calc)	Delta M	Peptide
8 - 33	2882.5000	2881.4927	2881.3777	0.1150 2	R.SPRPQODPARPOEPTMPPPETPSEGR.Q
34 - 44	1182.4400	1181.4327	1181.5677	-0.1349 0	R.QPSPSPSPTER.A
45 - 56	1423.5200	1422.5127	1422.6779	-0.1652 0	R.APASEEEFQFLR.C
161 - 170	1191.5000	1190.4927	1190.6520	-0.1592 1	K.HEARPLAELR.N
308 - 315	1000.3300	999.3227	999.3967	-0.0740 0	R.DYEEMASR.L
319 - 325	814.4300	813.4227	813.4708	-0.0481 0	R.LDAVLOR.I
359 - 372	1624.7400	1623.7327	1623.8692	-0.1365 1	R. LROEEPOSLOAAVR. T
361 - 372	1355.5300	1354.5227	1354.6841	-0.1613 0	R. QEEPQSLQAAVR. T
361 - 382	2550.3000	2549.2927	2549.2510	0.0417 2	R.QEEPQSLQAAVRTDGFDEFKVR.L
373 - 380	958.3500	957.3427	957.4080	-0.0653 0	R.TDGFDEFK.V
491 - 500	1165.3900	1164.3827	1164.5081	-0.1253 1	K.MESEEGKEAR.L
504 - 515	1300.4700	1299.4627	1299.6419	-0.1792 1	R.SSPEQPRPSTSK.A
516 - 529	1426.5700	1425.5627	1425.7365	-0.1737 0	K.AVSPPHLDGPPSPR.S
530 - 555	2653.3900	2652.3827	2652.2780	0.1048 0	R.SPVIGSEVFLPNSNHVASGAGEAEER.V
574 - 594	2265.1100	2264.1027	2264.0292	0.0735 0	R.ELDDSSSESSDLQLEGPSTLR.V
595 - 616	2544.4100	2543.4027	2543.2908	0.1120 1	R.VLDENLADPQAEDRPLVFFDLK.I
No match to: 132	0.4000, 134	8.4100			

さらにその下には、マッチしたペプチドがアミノ酸残基順(デフォルト設定の場合)に並んでリスト表示 されています。

Unformatted sequence string:残基数と共に配列をコピーしやすくなるページが開きます。他の アプリケーションで配列を使用したい場合に便利です。

Sort by	: リストの並び順を指定。残基番号、質量の昇順/降順 が選択可。		
Show	: 理論値と実測値がマッチしたペプチドのみをリストに表示させるか、マッチしなかった		
	理論ピークも表示させるかを選択します。		
Start-End	: タンパク質全長におけるアミノ酸残基番号。		
Observed	: ピークリストファイルの m/z。		
Mr(expt)	: ピークリストの値から計算されたペプチドの質量。		
Mr(calc)	: 配列から計算されたペプチドの質量。		
Delta	: $Mr(expt) - Mr(calc)_{\circ}$		
М	: Missed cleavage.		
Peptide	: ペプチド配列。修飾も含まれる場合は併せて表示されます。		

ページ下部で表示されているグラフはともにピークのマッチングの誤差を表すグラフで、左が Da、右が ppm で表現されています。ともに横軸は実験データ側のペプチド質量で、縦軸が誤差です。含まれている 事が確実なタンパク質でこのグラフを確認する事で、パラメーターで指定した誤差範囲(peptide tol.)の 設定値が適切であったかどうかを確認する事もできます。

```
ID
     PML HUMAN
                                Reviewed;
                                                    882 AA.
AC
     P29590; E9PBR7; P29591; P29592; P29593; Q00755; Q15959; Q59FP9; Q8WUA0; Q96S41; Q9BFW2; Q9BWP7; Q9BZX6; Q9BZX7; Q9BZX8; Q9BZX9; Q9BZY0; Q9BZY2;
AC
AC
     Q9BZY3;
DT
     01-APR-1993, integrated into UniProtKB/Swiss-Prot.
DT
     25-NOV-2008, sequence version 3.
DT
     02-JUN-2021, entry version 248.
DE
     RecName: Full=Protein PML;
DE
     AltName: Full=E3 SUMO-protein ligase PML;
DE
               EC=2.3.2.- {EC0:0000269 PubMed:20972456, EC0:0000269 PubMed:28250117};
     AltName: Full=Promyelocytic leukemia protein;
DE
DE
     AltName: Full=RING finger protein 71;
     AltName: Full=RING-type E3 SUMO transferase PML {ECO:0000305};
DE
DE
     AltName: Full=Tripartite motif-containing protein 19;
DE
               Short=TRIM19;
GN
     Name=PML; Synonyms=MYL, PP8675, RNF71, TRIM19;
     Homo sapiens (Human).
0S
0C
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
oc
     Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae;
oc
     Homo.
OX
     NCBI_TaxID=9606;
RN
     [1]
RP
     NUCLEOTIDE SEQUENCE [MRNA1 (ISOFORM PML-3), AND DISEASE
```

画面の最下部には<mark>タンパク質の詳細情報</mark>が表示されます。ただしデータベース側で情報表示に関する 適切な設定がある時のみ表示されます。

6-4. 結果のファイル出力

同定結果をファイル出力する事ができます。Format As の選択肢で「**Export Search Results**」を選択 してから「**Format As**」ボタンを押します。

Concise Protein Summary Report	
Format As Export Search Results	<u>Help</u>
Significance threshold p< 0.05	Max. number of hits AUTO
Preferred taxonomy All entries	✓

出力のファイルフォーマットや条件、出力項目 などを選択し、画面下部の「**Export Search Results**」ボタンを押すとファイル出力が実行 されます。

MATRIX SCIENCE	
Home Access Mascot Server Data	base search help Contact
Export search results	
Export format	CSV 🗸
Significance threshold p<	0.05
Max. number of hits	AUTO
Min. number of sig. unique sequences	1~
Include same-set protein hits (additional proteins that span the same set of peptides)	
Include sub-set protein hits (additional proteins that span a sub-set of peptides)	0
Preferred Taxonomy*	All entries
* Occasionally requires information to be retrie	eved from external utilities, which
Search Information	
Header	
Modification deltas	
Search parameters	
Format parameters	
Residue masses	
Protein Hit Information	
Score	
Significance threshold	
Expectation value	

7. 検索結果画面:MIS

この章では MASCOT MIS 検索における結果画面において説明します。

7-1. 表示例で使用している検索について

MIS の検索例として MASCOT Server 内に存在する以下の検索結果を利用します。

[公開サーバー] <u>https://www.matrixscience.com/cgi/master_results_2.pl?file=../data/F981142.msr</u> [ローカルサーバー] <u>http://localhost/mascot/master_results_2.pl?file=../data/F981142.msr</u>

設定項目	設定内容
Enzyme	Trypsin/P
Fixed Modification	Carbamidomethyl (C)
Variable Modification	Oxidation (M)
Peptide tol.±	20 ppm
Fragment mass tolerance \pm	0.6 Da
Missed cleavage	2
Instrument	Default
Refinement	実施
DeepLC	Full_hc_unmod_fixed_mods
MS ² PIP	CID

query 数 : 8,675

検索の結果、以下のスペクトルとタンパク質が同定されています。 同定スペクトル数 : 3,437 同定タンパク質数 : 863 (820 グループ)

7-2. 表示内容の詳細: summary 画面

7-2-1. 展開しない状態での画面概要

URL を WEB ブラウザで指定し結果画面を開くと、次頁のような画面が現れます。画面内の赤線で 囲われた各パーツで記載されている内容について、以降順に説明します。 (次頁図は表示領域の関係で2つの画像を1つに組み合わせています。)

User : matrix E-mail : support@matrixscience.com Search title : Yeast example (CPTAC study 6) MS data file : klc_031308p_cptac_study6_6B011.mgf Databases : 1: contaminants 20160129 (247 sequences; 128,130 residues) 2: Sigma_UPS 20240812 (50 sequences; 11,863 residues) 3: UP2311_S_cerevisiae 20240811 (6,091 sequences; 2,950,884 residues) Timestamp : 12 Aug 2024 at 11:09:31 GMT
Re-search All O Non-significant O Unassigned
▼Search parameters Type of search : MS/MS Ion Search Target FDR : 1% Enzyme : Trypsin/P Fixed modifications : d'Carbanidomethyl (C) Variable modifications : d'Carbanidomethyl (C) Variable modifications : d'Carbanidomethyl (C) Variable modifications : d'Oxidation (M) Mass values : Monoisotopic Protein mass tolerance : ± 20 ppm Fragment mass tolerance : ± 0.6 Da Max missed cleavages : 2 Instrument type : Default Number of queries : 8,675
Score distribution Modification statistics for all protein families Legend 7-2-5 スコア分布, 7-2-6 modification 一覧, 7-2-7 凡例
Protein Family Summary (results refined with 7-2-8 表示内容の切り替え[スコア足切りなど]
Significance threshold p< 0.01247 Max. number of families AUTO #[help] Target FDR (overrides sig. threshold) 1% FDR type Sequence ∨ Display non-sig. matches Min. number of sig. unique sequences 1 ∨ Preferred taxonomy All entries ∨ Refine results using machine learning (Percolator) #[help] ✓ - Use features calculated by Mascot #[help] - DeepLC model for retention times #[help] - MS2PIP model for spectral similarity #[help]
▼Sensitivity and FDR (reversed protein sequences)
Target Decoy FDR 7-2-9 Sensitivity and FDR Protein family members 863 29 3.36% Sequences above homology above homology above homology above homology and set above homology above
Details about ML model performance are available in ethe machine learning quality report Decov results are available in ethe decov report.
7-2-10 machine learning quality report Proteins (863) Report Builder Unassigned (4848) §. permalink
Protein families 1–10 (out of 820) 10 v per page 1 2 3 4 5 6 82 Next Expand all Collapse all Accession v contains v Find
▶1 3::P00549 652 Pyruvate kinase 1 OS=Saccharomyces cerevisiae (strain ATCC
 ▶ 2 1 3::P10592 2 3::P10591 3 3::P16474 ▶ 3 3::P16474 > 557 Heat shock protein SSA2 OS=Saccharomyces cerevisiae (strai Heat shock protein SSA1 OS=Saccharomyces cerevisiae (strai 147 Endoplasmic reticulum chaperone BiP OS=Saccharomyces cer
*3 - 1 3::P07259 2 3::P03965 ※ る マ ス ²
▶4 1 3::P00359 2 3::P00358 3 3::P00360 2 3::P00360 2 3::P00360 1 3::P00360

User	: matrix
E-mail	: support@matrixscience.com
Search title	: Yeast example (CPTAC study 6)
MS data file	e : klc_031308p_cptac_study6_6B011.mgf
Databases	: 1: contaminants 20160129 (247 sequences; 128,130 residues)
	2: Sigma_UPS 20240812 (50 sequences; 11,863 residues)
	3: UP2311_S_cerevisiae 20240811 (6,091 sequences; 2,950,884 residues)
Timestamp	: 12 Aug 2024 at 11:09:31 GMT

「5-3 MIS 検索パラメーター 一覧」も併せてご覧ください。

User	: パラメーター「 your name 」で指定した内容。
Email	: パラメーター「 Email 」で指定した内容。
Search title	: パラメーター「Search title」で指定した内容。
MS data file	: 検索で使用した実験データのファイル名。
Database(s)	: 検索対象としたデータベースとバージョン、登録件数と総残基数。
Taxonomy	: パラメーター「Taxonomy」で指定した生物種(使用した時のみ)。その生物種として
	登録されているエントリー数も表示されます。
Timestamp	: 検索開始時間

7-2-3. 再検索と結果ファイル出力: Re-search ボタン、Export ボタン

「**Re-search**」は再検索を実施するためのボタンです。再検索を行う query の種類によって、**All**(すべての query)、「**Non-significant**」(同定基準に満たなかった query)、「**Unassigned**」(同定タンパク質に帰属 しない query)の3種類を選択する事ができます。

「Export」は検索結果をペプチド単位でファイル出力するためのオプションです。様々なフォーマット、同定ペプチド/タンパク質の条件、出力項目を設定してファイル出力する事ができます。詳細は「7-5.Export 機能によるペプチドベースの検索結果ファイル出力」をご覧ください。

7-2-4. Search parameters

▼Search parameters	
Type of search	: MS/MS Ion Search
Target FDR	: 1%
Enzyme	: Trypsin/P
Fixed modifications	: 🗹 Carbamidomethyl (C)
Variable modifications	: 🗹 Oxidation (M)
Mass values	: Monoisotopic
Protein mass	: Unrestricted
Peptide mass tolerance	: ± 20 ppm
Fragment mass tolerance	: ± 0.6 Da
Max missed cleavages	: 2
Instrument type	: Default
Number of queries	: 8,675

パラメーター内容の詳細は	、「 5-3:MIS 検索パラメーター 一覧 」をご覧ください。
Type of search	: MASCOT 3 つの検索手法のうち、どれか。
Enzyme	:切断パターン。
Fixed modification	: 修飾、すべての対象アミノ酸の質量を指定内容に入れ替える。
Variable modification	: 修飾、対象アミノ酸の質量を指定内容と入れ替えるケースと入れ替えない
	ケースの両方を計算する。
Mass values	: 各種質量計算に使うアミノ酸の質量が、「Monoisotopic」か「Average」か。
Protein Mass	: タンパク質質量の上限値。
Peptide Mass Toleranc	e: ペプチドの質量マッチングにおける誤差範囲。
Fragment Mass Tolera	nce:フラグメントの質量マッチングにおける誤差範囲。
Peptide Charge State	: ペプチドの価数 (precursor イオンレベル)。
#13 C	: ペプチドに含まれる ¹³ C を考慮した回数(例図には表示なし)。
Max Missed Cleavages	: Enzyme 設定について、切断箇所と認定された箇所を見逃し連結した
	ペプチドを作成する事ができるが、何度まで見逃すことを許容するかに
	ついての設定。
Instrument type	: 考慮するイオンシリーズやフラグメントピークの電荷に関する情報が定義
	されたセット。
Number of queries	:入力データの測定データ数。

7-2-5. Score Distribution

Score distribution

「Score distribution」の箇所をクリックする と、2つのスコアのヒストグラムが表示されます。 上は query、下は同定タンパク質です。

上の query のグラフは、横軸がマッチング 度合いを表す Mascot Ions スコア、縦軸が 個数です。ペプチドの同定基準値に該当する スコアが緑の網掛けラインの一番右側となりま す。

下は同定タンパク質のスコア(ペプチドの スコアをタンパク質毎に集計したスコア)分布 です。タンパク質には同定基準スコアはなく、 グラフには緑の網掛けは現れません。

Peptide score distribution. Ions score is $-10 \log(P)$, where *P* is the probability that the observed match is a random event. There are **3,827** peptide matches above identity threshold and **3,827** matches above homology threshold for **8,675** queries. On average, individual ions scores > 14 (beyond green shading) indicate identity or extensive homology (p<0.03859).

[Deprecated] Protein score distribution. Score distribution for family members in the first 50 proteins. Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein families.

7-2-6. Modification statistics for all protein families

Modification statistics for all protein families

「Modification statistics for all protein families」の箇所をクリックすると、同定 query のうち 修飾を含んでいた内容について、種類別の個数がカウントされリスト表示されます。

▼Modification statistics for all protein families							
Modification	Delta	Type	<u>Site</u>	Total matches			
Carbamidomethyl	57.021464	fixed	C	327			
Oxidation	15.994915	variable	M	58			

Legend

「Legend」の箇所をクリックすると、 結果画面の見方に関する説明が表示 されます。

Peptide columns a	and rows				
Dupes	Expect 0.037	Rank 2	U 1 2 Pepti GAYS	de	significant
	9	1	GFFLF	VEGGR	top ranking
	6.4e-05	1	GSSI	FGLAPGK	significant and top ranking
	1.3e-06	1	SSGT	SYPDVLK	peptide is found in all proteins in family member 1
	6.2e-07	1	VCNY	VSWIK	peptide is found in some but not all proteins in family member 2
	6.4e-05	1	U GSSI	FGLAPGK	unique
2	5.7e-05	1	LNTL	ETEEWFFK	peptide has two duplicates
	0.18	11	LNTLE	TEEWFFK	duplicate peptide
Right-facing triang facing triangle (see results format	gle () in the Du) indicates the co help.	pes or	r Rank colum is expanded	nn indicates d and can be	content that can be expanded by clicking on it. Down- collapsed. For more details about particular columns,
Right-facing triang facing triangle (see results format Protein quantitation	gle () in the Du) indicates the co help.	pes o ontent	r Rank colun is expanded	nn indicates d and can be	content that can be expanded by clicking on it. Down- collapsed. For more details about particular columns,
Right-facing triang facing triangle (see results format Protein quantitation	gle () in the Du) indicates the co help. on ratios Score	ipes o ontent	r Rank colum is expanded 114/113	nn indicates d and can be 115/113	content that can be expanded by clicking on it. Down- collapsed. For more details about particular columns,
Right-facing triang facing triangle (see results format Protein quantitation CFAH_HUMAN	gle () in the Du) indicates the co help. on ratios Score 37559	ipes o ontent	r Rank colum is expanded 114/113 0.962	115/113 1.129	content that can be expanded by clicking on it. Down- collapsed. For more details about particular columns,
Right-facing triang facing triangle (see results format Protein quantitation CFAH_HUMAN FHR2_HUMAN	gle () in the Du) indicates the co help. on ratios Score 37559 1330	ipes o ontent	r Rank colum is expanded 114/113 0.962 0.859	115/113 1.129 1.128	content that can be expanded by clicking on it. Down- collapsed. For more details about particular columns,
Right-facing triang facing triangle (" see results format Protein quantitation CFAH_HUMAN FHR2_HUMAN When quantitation is expanded, Ratic Bold indicates tha Bold indicates tha	yle (▶) in the Du) indicates the co help. on ratios Score 37559 1330 ■ method is Repo Is in <i>italic</i> indicat it if you can assu icance level 0.05	rter (e erter (e intent	r Rank colun is expanded 114/113 0.962 0.859 e.g. iTRAQ) d the peptide eptide ratios	nn indicates d and can be 115/113 1.129 1.128 or Multiplex log-ratios d are normali	content that can be expanded by clicking on it. Down- collapsed. For more details about particular columns, (e.g. IPTL), protein ratios are displayed when a family o not appear to come from a normal distribution. y distributed, the protein ratio is significantly different

7-2-8.表示内容の切り替え [スコア足切り,refinementの再実行など]

Significance threshold n<		0.01247	Max, number of families	ſ	AUTO	₫[help]
Target EDP (overrides sign threshold)		1%		l	Sequence X	
B: L		1 /0 •			Sequence +	
Display non-sig. matches			Min. number of sig. unique seque	ences	1 🗸	
			Dendrograms cut at		0	
Preferred taxonomy		All entries		~]	
Refine results using machine learning (Perco	lator) ₫[help]	 ✓ 				
- Use features calculated by Mascot	⊿ [help]	V				
- DeepLC model for retention times	⊿ [help]	full_hc_unm	od_fixed_mods ~			
- MS2PIP model for spectral similarity	ď[help]	CID	▼			
						• •

表示するタンパク質やペプチドに関する条件を指定し、表示内容を変更します。

Significance threshold p < :

有意性の閾値 p の設定です。現バージョンでは「ペプチドの期待値で見た同定基準値」が示されます。 FDR の設定を満たすような値が自動的に調整・設定されます。

Max.number of families :

結果として表示するタンパク質(ファミリー)数の上限値。デフォルトは Auto、すなわち同定基準を超える タンパク質をすべて表示する設定です。

Target FDR (overrides sig.threshold) :

FDR の設定値。

FDR type :

FDR のカウント対象。PSM は query を数え上げるのに対し、Sequence は同じペプチド配列にマッチする query を1つにまとめてカウントします。

Display non-sig. matches :

同定基準を超えるペプチドのみ表示されるのがデフォルト設定ですが、タンパク質にアサインされている ペプチドすべてを結果に表示させたり、スコアで閾値を設けて表示させたりする事が可能です。

Min. number of sig. unique sequences :

同定タンパク質の基準として、アサインされるユニークなペプチドをいくつとするかという設定です。 MASCOT のデフォルトは1です。設定値を2以上にすると同定タンパク質のリストの信頼性を引き上げる 事ができる反面、同定タンパク質数は大幅に減ります。

Dendrograms cut at :

ファミリータンパク質の類似度を表しているデンドログラムについて、スコアのカットオフを指定します。 デフォルトではカットオフを実行しない 0 です。カットオフの結果によって類似するタンパク質が1つに まとめられることがあります。

Unigene index :

(例図になし、Unigene の設定を行っている塩基配列データベースで検索した時のみ。)タンパク質を 遺伝子ベースのファミリーにクラスタリングするために使用する UniGene インデックスを選択し結果画面 で表示します。

Error tolerant matches :

Error tolerant 検索を行った時のみ。検索 内容に対する信頼度に基づき検索結果の表示 内容を切り替える事ができます(右図)。

Error tolerant matches:	Reliable 🗸
Preferred taxonomy	Reliable
,	None
	All

Preferred taxonomy :

優先表示させる生物種。タンパク質の 1 つのエントリーには複数生物種エントリーが統合されている事が あります。検索パラメーター「taxonomy」の絞り込みはエントリーに登録されている複数生物種すべてに 対応できる一方、表示される生物種はデフォルトで定められた1種類のみです。結果、パラメーターで指定 した生物種と明らかに異なる生物種由来と見受けられるエントリーが結果に表示されることがあります。 Preferred taxonomy の設定を行う事で、優先して表示させる生物種名を指定した生物種に切り替える 事ができます。

Refine results using machine learning (Percolator) :

Refinement 実施。実施する事で同定ペプチド数が増えます。

Use features calculated by Mascot :

Percolator の core features を計算・利用するかどうか。現バージョンでは refinement を実施した場 合必ずこの項目にチェックが入ります。

DeepLC model for retention times:

ペプチド配列データから保持時間予測の計算の実施と、その結果を Percolator で利用するかどうか。 選択肢は計算時に使うパラメーターセットで、どのようなトレーニングデータセットを使ったかに基づいた 名称がつけられています。

model に関する説明は、以下の help ページをご覧ください。

https://www.matrixscience.com/help/ms2rescore_help.html#DEEPLCMODELS

MS2PIP model for spectral similality :

ペプチド配列データから MS2 スペクトル予測の計算の実施と、その結果を Percolator に引き渡すかどうか。 選択肢は計算時に使うパラメーターセットで、どのようなトレーニングデータセットを使ったかに基づいた 名称がつけられています。

model に関する説明は、以下の help ページをご覧ください。

https://www.matrixscience.com/help/ms2rescore_help.html#MS2PIPMODELS

7-2-9. Sensitivity and FDR

protein FDR の値と peptide(MASCOT では Sequences と表記)または PSM の FDR の値が表示 されます(下図)。

▼Sensitivity and FDR (reversed protein sequences)						
	Target	Decoy	FDR			
Protein family members	863	29	3.36%			
Sequences ~ above homology ~	3437	34	0.99%			

7-2-10. machine learning quality report

機械学習アルゴリズムによる同定結果の refinement による確からしさや効果、再スコアリングに影響を 及ぼした要素について確認する事ができます。関連したグラフを多数表示させる事ができます。

Details about ML model performance are available in zthe machine learning quality report.

ハイパーリンクをクリックするとレポートが表示されます。レポートは「Overview」、「Target-Decoy evaluation」、「Rescoring features」の3つのタブで構成されています。

「Overview」タブでは、refinement適用前後で結果がどのように変わったかに関する情報がまとめられています。

General statistics では、refinement 適用前後での同定スペクトル数、または Peptide 数の変化が まとめられています。

Score comparison では、各 query に関して、refinement 適用前後のスコアに基づいたプロットです。 target(青)と decoy (赤)両方の結果が同時に含まれています。

False discovery rate comparison では、FDR の区切りを変化させた場合、同定スペクトル数が どのように推移するかまとめられています。

Identification overlap では、refinement 適用前後により query の結果が変わったもの、変わらない ものがそれぞれどれくらいあるかを示します。

「Target-decoy evaluation」タブでは、target データベースと decoy データベースにおける結果の違い について検証するためのグラフが提供されます。

Score histogram ではtargetとdecoyのスコア分布、特に両者の分布がどれくらい分離されているかを 確認する事ができます。同定基準値が点線で示されています。

Percentile-percentile plot (PP plot)では Decoy データベースと Target データベースそれぞれに 対して行った検索のスコア分布について累積度を比較しています。

「**Rescoring features**」タブでは、Percolator が再評価の際に使用した features に関するグラフが表示 されます。

Individual feature performance では、再評価の際 Percolator の判断において features がどれくら い影響を及ぼしたのかを示しています。

MS²PIP model performance では、実測値と予測値ピアソン相関のヒストグラムが表示されます。配列 から予測されたスペクトルと実測データとの一致度は、feature の1つとして refinement 計算に利用され ます。

DeepLC model では、保持時間の 実測値と予測値について、散布図 並びにピアソン相関のヒストグラムが 表示されます。予測+キャリブレーシ ョンされた保持時間と実測データと の一致度は、featue の1つとして refinement 計算に利用されます。

DeepLC model performance

DeepLC model performance can be visualized by plotting the predicted retention times against the observed retention times (top chart), or by calculating the relative mean absolute error (RMAE).

The scatterplot shows the observed retention time compared to predicted retention time. Only target PSMs that passed the 1% FDR threshold are disclosured

The histogram shows the distribution of RMAE values of DeepLC predictions on 460 different benchmark datasets. The red line indicates the RMAE value of the current data set, for all target PSMs that passed the 1% FDR threshold of the current dataset. A lower RMAE value indicates better performance.

7-2-11. 同定タンパク質とアサインペプチド

同定タンパク質に関する情報がまとめられた箇所です。

Proteins (863) <u>Report Builder</u> <u>Unassigned (</u>	(4848)	<u>§_permalink</u>					
Protein families 1–10 (out of 820)							
10 v per page 1 2 3 4 5 6 82 Ne	Expand all Collapse all						
Accession V Contains V	Find	Clear					
▶1 3::P0	0549 652	Pyruvate kinase 1 OS=Saccharomyces cerevisiae (strain ATCC					
▶2 1 3::P1	0592 557	Heat shock protein SSA2 OS=Saccharomyces cerevisiae (strai					
2 3::P1	0591 554	Heat shock protein SSA1 OS=Saccharomyces cerevisiae (strai					
3 3::P1	6474 147	Endoplasmic reticulum chaperone BiP OS=Saccharomyces cer					

上図のうち上側の部分を拡大して表示したのが以下の図です。

Proteins (863)	Report Builder	Unassigned (4848)	
Protein famili	es 1–10 (out o	o <mark>f 820)</mark>	

赤で囲われた部分のうち、数字 863 の箇所はリストアップされた同定タンパク質の種類、数字 820 の 部分は同定タンパク質ファミリーの数です。ファミリーとはシェアペプチドを持つタンパク質をまとめた グループです。詳細は「9-6.Protein inference」をご覧ください。

上記情報以外に、1 ページに表示するタンパク質ファミリーの数、現在表示されているページとそれ以外のページへの移動、表示内容の全展開/全収縮、そして項目の検索欄が準備されています。

続いて各ファミリーの情報が記された箇所について説明します。

▶2 など、各タンパク質ファミリーの先頭には三角マークと rank の数字が表示されています。三角部分 をクリックすると、同定タンパク質に関するより詳しい情報、タンパク質にアサインされているペプチドの マッチング情報などが表示されます(下図)。

展開された時に表示される内容について、上図の青で囲われた各パーツ単位でより詳しい説明を 行います。

Proteins (863) <u>Report Builder</u> <u>Unassigned (484</u>	<u>3)</u>	§_permalink
Protein families 1–10 (out of 820)		
10 v per page 1 2 3 4 5 6 82 Next	Expand all Collapse all	
Accession	Find	Clear
▶1 3::P0054	9 652	Pyruvate kinase 1 OS=Saccharomyces cerevisiae (strain ATCC
2 1 3::P1059	2 557	Heat shock protein SSA2 OS=Saccharomyces cerevisiae (strai
2 3::P1059	1 554	Heat shock protein SSA1 OS=Saccharomyces cerevisiae (strai
3 3::P1647	4 147	Endoplasmic reticulum chaperone BiP OS=Saccharomyces cer

デンドログラムが表示されている箇所では、同定タンパク質のうち共通ペプチドを持つタンパク質の類似 度が表現されています。より右側で結合しているタンパク質がより類似している事を表します。類似度を 表すスコア(横軸)が可動バーになっていて、変更した場合の結果がインタラクティブに表示されます。 (スコアを直接数字入力し Cut ボタンを押す事でも切り替わります。)

		Score	Mass	Matches	Sequences	emPAI	
2.1	₫3::P10592	557	69599	41 (41)	26 (26)	4.15	Heat shock protein SSA2 OS=Saccharor
2.2	⊠3::P10591	554	69786	41 (41)	28 (28)	4.44	Heat shock protein SSA1 OS=Saccharon
2.3	⊠3::P16474	147	74479	10 (10)	9 (9)	0.67	Endoplasmic reticulum chaperone BiP 0
Redispla	v All None						

ファミリーに属する各タンパク質の情報が表示されています。図例は rank 2 ですが、rank2 の中で スコア順にサブの番号がつけられ、それぞれ 2.1, 2.2 などと表現されています。そのほかの項目は以下の 通りです。

Score :

タンパク質のスコア。タンパク質にアサインされているペプチドの Ions Score をもとに算出され、大きい ほど信頼度の高いペプチドが多いことを示しますが、現在の MASCOT では Protein Score をもとに同定 タンパク質を判定する事はしていません。

Mass :

タンパク質の質量。データベースに登録されている配列情報から計算。

Matches :

タンパク質にアサインされた query 数。()内の数字はその中で同定基準を超えているもの。現在のデフォ ルト設定では同定基準を超えている query のみ結果画面に表示されているため()内外の数字が同じです。 Sequences :

query のうち同じペプチド配列にマッチしている内容を 1 つにまとめてカウントしたもの。()については Matches と同じく同定基準を超えているもののみをカウント。

emPAI :

Spectral Counting の1つである emPAI。値が大きいほど量が多いという判断の基準となります。 タンパク質にアサインされたペプチド配列数をもとに算出し、かつタンパク質の大きさをもとに標準化 されているため結果内の異なる大きさのタンパク質間でも比較が可能。詳細は以下 URL をご覧ください。 https://www.matrixscience.com/help/quant_empai_help.html

続いて、アサインペプチドに関して表示しています。

peptide matches	(49 non-duplica	ite, 10 duplic	ate)						
uto-fit to window									
Query Dupes	Observed	Mr (expt)	Mr(calc)	ppm M Sec	ore Exp	ect Ra	nk	U 1 2 3	Peptide
₫364	380.7134	759.4122	759.4127	-0.54 0	23 0.0	047 🕨 1			R.NSTIPTK.K
d 472	389.1940	776.3735	776.3738	-0.44 0	23 0.0	046 🕨 1			K.MVAEAEK.F
z1890	417.2091	832.4037	832.4039	-0.19 0 :	15 0.	033 🕨			K.DLSTNOR.A
e ¹ 1012	426.2002	850.3857	850.3742	13.6 0	15 0.	034 🕨 3		U 🖉	R.MVEEAEK.F + Oxidation (M)
d 123 8	439.7519	877.4892	877.4909	-1.94 0	23 0.0	055 🕨 1		U	K.VAYPITSK.L
d1300	444.7366	887.4585	887.4600	-1.64 0	21 0.0	083 🕨			R.STLDPVEK.V
d2222	490.7442	979.4739	979.4757	-1.79 0	25 0.0	034 🕨 1		U 🖉	R.ALSSOMSTR.I
z 2422	334.8570	1001.5490	1001.5505	-1.51 1 :	19 0.	012 🕨			K. TKDNNLLGK. F
A									

Query

: Query 番号。MASCOT では入力データについて、ペプチドの質量に換算した際 小さい順に番号が割り振られます。Query 番号が小さいデータはペプチドの質量が 小さい事を示します。

Dupes	:同じペプチド配列でかつ修飾や電荷も同じ結果にマッチした query は、スコアが最も
	高いもののみ表示されそれ以外は Dupes 欄に格納されます。Dups で表示される
	数字は query がいくつまとめられているかを表し、三角印をクリックすると
	その query が表示されます。
Observed	: 実験データ側のペプチドの m/z
Mr(expt)	:m/zと電荷から計算された、実験データ側のペプチドの質量
Mr(calc)	: データベースの配列から計算された、理論値側のペプチドの質量
Delta	: Mr(expt) – Mr(calc)
Μ	: 理論ペプチド作成時に Missed cleavage 設定が実際に適用された回数
Score	: Mascot Ions score で実験値の MS2 ピークと理論値とのマッチング度合いを表します
Expect	:同定基準値と Score から計算された期待値。
Rank	: データベース中の候補ペプチドとマッチングを行った際、表示されているペプチド配列
	とのマッチングが全体の中で何位であったかを示します。「Rank」の箇所をクリック
	して展開すると、下図のようにマッチングとスコアリングを行った他のペプチドとその
	スコアについて rank 順に表示されます。また上部にはその query で定められた
	2つの同定基準値も併せて表示されます(詳細は「 9-4.同定ペプチド 」をご覧下さい)。

	Locus:3.645.3 Score > 33 Score > 23	indicat indicat	tes identity tes homology	
3	0.4100 0	63	6.2e-06 🔽	R.DFIDYYLIK.Q
	-0.5813 0) 7	2.5 2	DFPETNNILK
	0.3187 1	. 6	3.4 3	TPPIIHRDLK
	-0.7060 1	. 5	3.5 4	KETMALILK
	0.3816 0) 5	4.1 5	DTLSINATNIK
	0.5306 1	. 5	4.1 6	DPYRDLDMHR + Oxidation (M)
	0.5273 1	. 4	57	SRGACEPDPSLR
	0.4106 0) 3	6.7 8	SEVLPQEMLK + Oxidation (M)
	-0.5813 0) 3	6.9 9	SLLDANFEPGK
	-0.3703 0) 2	7.4 10	MFGCDVGSDWR + Oxidation (M)

U

- : U マークがついている場合、他のエントリーと共有されていない Unique ペプチドで ある事を意味します。
- 数字 : 数字はファミリーに属するタンパク質と連動しています。■印があるタンパク質に該当 ペプチドがアサインされていることを示します。同じファミリー内で■が1つのみ表示 されているペプチドがユニークペプチドという事になります。
- Peptide : ヒットしたペプチド配列。修飾や前後のアミノ酸残基なども併せて表示されます。

7-2-12. Report Builder タブ(タンパク質ベースの検索結果ファイル出力)

7-2-10 でご案内した同定タンパク質の表示個所について、表示領域全体がタブ構成になっています。 7-2-10 でご案内したのは「Proteins」タブでしたが、それ以外に2つのタブがあります。 「Report Builder」(下図)は、同定タンパク質ベースのリストを作成するのに便利なページです。

Proteins (863) Report Builder	<u>Unassigned (4848)</u>				
Protein families 1–10 (out of 820)					

Report Builder タブをクリックすると、表示が下図のように切り替わります。

P	Proteins (863) Report Builder Unassigned (4848)											
Dre	Protein family members (863 proteins)											
₽С	► Columns: Standard (12 out of 16)											
€Fi	▶ Filters: (none)											
Exp	oort as	csv										
† <mark>Fa</mark>	mily	М	DB	Accession	Score	Mass	Matches	Match(sig)	Sequences	Seq(sig)	emPAI	Description
1		1	UP2311_S_cerevisiae	₫3::P00549	652	54909	54	54	34	34	13.67	Pyruvate kinase 1 OS=Saccharomyces cerevisiae
2		1	UP2311_S_cerevisiae	₫3::P10592	557	69599	41	41	26	26	4.15	Heat shock protein SSA2 OS=Saccharomyces cer
2		2	UP2311_S_cerevisiae	₫3::P10591	554	69786	41	41	28	28	4.44	Heat shock protein SSA1 OS=Saccharomyces cer
2		3	UP2311_S_cerevisiae	₫3::P16474	147	74479	10	10	9	9	0.67	Endoplasmic reticulum chaperone BiP OS=Saccha
3		1	UP2311_S_cerevisiae	data::P07259	556	246198	40	40	39	39	0.96	Multifunctional protein URA2 OS=Saccharomyces
3		2	UP2311_S_cerevisiae	₫3::P03965	135	124465	11	11	11	11	0.45	Carbamoyl phosphate synthase arginine-specific
4		1	UP2311_S_cerevisiae	data::P00359	508	35838	35	35	20	20	12.15	Glyceraldehyde-3-phosphate dehydrogenase 3 O
4		2	UP2311_S_cerevisiae	dramatic state st	453	35938	33	33	18	18	9.33	Glyceraldehyde-3-phosphate dehydrogenase 2 O
4		3	UP2311_S_cerevisiae	data::P00360	161	35842	12	12	10	10	2.23	Glyceraldehyde-3-phosphate dehydrogenase 1 O
5		1	UP2311_S_cerevisiae	₫3::P16521	477	116727	35	35	24	24	1.66	Elongation factor 3A OS=Saccharomyces cerevis
6		1	UP2311 S cerevisiae	₫3::P19097	463	207388	37	37	34	34	1.00	Fatty acid synthase subunit alpha OS=Saccharon

上図のようなリストが作成され、表示内容を CSV ファイルで出力する事ができます。さらに、表示する 項目を調整する「Columns」、表示するタンパク質に対してスコアやアサインペプチド数などで絞り込み 条件を与える「Filters」などといった機能を使用する事も出来ます(下図)。

Proteins (480) Report Builder	<u>Unassigned (3</u>	<u>30379)</u>	
Protein family members (271	proteins)		
▼Columns: Standard (12 out of 16)			
Arrangement: <a>custom>	Load	ke default	
Enabled		Available	
Family Member Database Accession Score Mass Num. of matches Num. of significant matches Num. of sequences Num. of significant sequences emPAI Description		Protein family members Aum. of unique sequences Num. of significant unique sequences Sequence coverage pl	
		Apply	
▼Filters: "Num. of significant matche	es" >= 2		
Num. of significant m	atches ≥ 🗸	2 Remove	
AND ~ Sequence coverage		v < v	
		Update	

7-2-13. Unassigned タブ

「Unassigned」タブでは、同定タンパク質にアサインされていないペプチドの一覧が表示されます。 表示項目については、7-2-10で示したタンパク質にアサインされているペプチドとほとんど同じですので、 項目の内容についてはそちらをご参照ください。

Proteins (8	363) <u>Report</u>	Builder Unass	<u>igned (4848)</u>					<u>§_permalink</u>	
Dratain families 1, 10 (out of 820)									
10 ♥ per									
Accession	Accession V contains V Ciear								
▶1			3::P00549		652	Pyruvate kinase 1 C)S=Saccharo	myces cerevisiae (strain ATCC	
▶2		1	3::P10592 3P10501		557 554	Heat shock protein Heat shock protein	SSA2 OS=Sa SSA1 OS=Sa	ccharomyces cerevisiae (strai ccharomyces cerevisiae (strai	
Proteins (Proteins (863) Report Builder Unassigned (4848)								
Unacciar	ood nonti	des 1-1(0 (out of	4848)					
Unassiyi	ieu pepu			4040)					
100 🗸 per	page 1	234	<u>5</u> <u>6</u> <u>49</u>	<u>Next</u>	Sort by	Decreasing s	score	~	
Query	~	Filte	r Clear						
Quory									
Peptide ma	tches not a	ssigned to	protein fami	lies (no d	etails m	eans no ma	atch)		
Query	Observed	Mr(expt)	Mr(calc)	ppm	M Score	Expect	Ran k	Peptide	
₫6795	525.2460	1572.7162	1572.7168	-0.39	0 14	0.039	1	ITPAHDQNDYNTGK	
₫8256	679.0183	2034.0332	2034.0357	-1.24	0 14	0.039	1	SIAPAYGIPVVLHSDHCAK	
₫2557	509.2711	1016.5277	1016.5291	-1.32	0 14	0.039	1	EYTINLHK	
₫4909	428.5814	1282.7225	1282.7245	-1.54	1 14	0.039	1	TILKPGVEANNK	
⊠1 875	473.7638	945.5131	945.5131	0.0011	1 14	0.039	1	EIDVTGGKK	
₫3707	571.3170	1140.6195	1140.6213	-1.52	0 14	0.039	1	NMPVPILETK	
₫4254	402.1887	1203.5443	1203.5455	-0.96	0 14	0.039	1	SHAVQNMDFR	
₫2538	508.2740	1014.5335	1014.5346	-1.01	0 14	0.039	1	STQGPIVADK	
₫1251	440.7422	879.4699	879.4702	-0.26	0 14	0.039	1	YIESLOK	
₫2278	493.7787	985.5428	985.5444	-1.58	1 14	0.04	1	LKGVTDPEK	
₫2677	515.2882	1028.5618	1028.5614	0.37	0 14	0.04	1	QVQNATLQK	
₫5413	452.2482	1353.7227	1353.7252	-1.87	1 14	0.04	1	ENPTLRPAEISK	
₫746	408.2457	814.4768	814.4800	-3.96	0 14	0.04	1	LLVVDEK	
₫1706	465.7350	929.4554	929.4566	-1.38	0 14	0.04	1	SDTPANIGR	
- 3639	568 2367	1134 4588	1134 4618	2 63	0 14	0 04		FGYGYFFDR	

7-3. Protein View

結果画面では様々なハイパーリンクがあります。タンパク質名(Accession)のハイパーリンクをクリック すると、マッチしたタンパク質についてより詳しい情報が記されている「Protein View」の画面となります (次頁図)。

次々頁以降、次頁図の青で囲われた各表示領域についてより詳しく説明します。

MATRIX SCIENCE MASCOT Search Results	
Protein View: P10592	
Heat shock protein SSA2 OS=Saccharomyces cerevisiae (strain ATCC 2	204508 / S288c) OX=559292 GN=SSA2 PE=1 SV=3
Detailed information about this protein hit is shown below. (help)	
Database: UP2311_S_cerevisiae Score: 557 Monoisotopic mass (M _P): 69599 Calculated pI: 4.95	
Sequence similarity is available as an NCBI BLAST search of P10592 against nr.	
Search parameters	
MS data file: klc_031308p_cptac_study6_6B011.mgf Enzyme: Trypsin/P: cuts C-term side of KR. Fixed modifications: Carbamidomethyl (C) Variable modifications: Oxidation (M)	
Protein sequence coverage: 44%	
Matched peptides shown in <i>bold red</i> .	
1 MSRAVGIDLG TTYSCVAHFS NDRVDIIAND QCNRTTPSFV GFTDTERLIG 51 DAARNQAAMN PANTVFDAKR LIGRNFNDPE VQCDMKHFPF KLIDVDGKPQ 101 LQVEFKGETK NFTEGJISSM VLGKMKETAE SYLGAKVNDA VVTVPAYFND 151 SQRQATKDAG TIAGLNVLRI INEPTAAIA YGLDKKGKEE HVLIFDLGGG 201 TFDVSLLSIE DGIFEVKATA GDTHLGGEDP DNRLVNHFJQ FFKRNKKDL 251 STNQRALRRL RTACERAKHT LSSSAQTSVE IDSLFEGIDF YTSTRAFFE 301 ELCADLFRST LDPVEKVLRD AKLDKSQVDE IVLVGGSTRI PKVCKLVTDY 351 FNGKEPNRSI NPDEAVAYGA AVQAAILTGD ESSKTQDLLL LDVAPLSLGI 401 ETAGGVMTKL IPRNSTIPTK KSEVFSTYAD NQPGVLIQVF EGERAKTKDN 451 NLGKFELSG IPPAPRGVPQ IEVIFDVDSN GILNVSAVEK GTGKSNKITI 501 TNDKGRLSKE DIEKMVAEAE KFKEEDEKES QRIASKNQLE SIAYSLKNTI 551 SEAGDKLEQA DKDAVTKKAE ETIAMLDSNT TATKEEFDDQ LKELQEVANP 601 IMSKLYQAGG APEGAAPGGF PGGAPPAPEA EGPTVEEVD Unformatted sequence string: 639 residues (for pasting into other applications). Sort by © residue number O increasing mass O decreasing mass Show © matched peptides only O predicted peptides also Query Start - End Observed Mr (expt) Mr (calc) ppm M Score #4341 24 - 34 607.8089 1213.6033 1213.6051 -1.46 0 39 #6135 35 - 47 729.3478 1456.6810 1456.6835 -1.71 0 29 #68279 55 - 69 796.3790 1590.7434 1590.7460 -1.64 0 32 #6820 55 - 69 531.2552 1590.7438 1590.7460 -1.64 0 32 #6820 55 - 69 804.3763 1606.7380 1606.7409 -1.77 0 20 #6827 55 - 69 804.3763 1606.7381 1606.7409 -1.77 0 20 #6826 55 - 69 804.3763 1606.7381 1606.7409 -1.78 0 19 #6926 55 - 69 804.3763 1606.7381 1606.7409 -1.77 0 20 #5694 75 - 86 697.3038 1392.5930 1392.5980 -3.58 0 25 #6826 111 - 124 775.8977 1549.780 1549.7810 -0.099 0 22 #5251 125 - 136 664.3303 1326.6461 1326.6489 -2.13 1 30	Expect Rank U Peptide 0.00013 1 R.VDIIANDQGNR.T 0.0013 0.0013 1 U. R.TTPSFVGFTDTER.L 0.0006 1 U. K.NQAAMNPANTVFDAK.R 0.0013 1 U. K.NQAAMNPANTVFDAK.R 0.0013 1 U. K.NQAAMNPANTVFDAK.R + Oxidation (M) 0.0009 1 U. K.NQAAMNPANTVFDAK.R + Oxidation (M) 0.0002 1 U. R.NPNDFEVQEDMK.H + Oxidation (M) 0.006 1 K.NFTFEQISSNVLCK.M 0.0011 1 K.MKETAESYLGAK.V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26 0.0025 1 K.NQLESIAYSLK.N 30 0.00095 1 U K.KAEETIAWLDSNTTATK.E 20 0.0092 2 U K.ELQEVANPIMSK.L 23 0.0053 1 U K.ELQEVANPIMSK.L
<pre> Box Control (Control (Control</pre>	reast). :omycetes;

Protein View: P10592

Heat shock protein SSA2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=SSA2 PE=1 SV=3

Detailed information about this protein hit is shown below. (help)

Database:UP2311_S_cerevisiaeScore:557Monoisotopic mass (Mr):69599Calculated pI:4.95

Sequence similarity is available as <u>an NCBI BLAST search of P10592 against nr</u>.

ページの最初にタンパク質の Acession と Description が表示されます(上図)。続いて以下のような 情報が表示されます。

Database	: 使用したデータベース名
Score	: タンパク質のスコア
Monoisotopic ma	ss (Mr) : データベースの配列から計算されたタンパク質の質量
Calculated pI	: データベースの配列から計算された予測等電点
Taxonomy	: 生物種 (上図では表示されていません)

また該当タンパク質の配列を NCBI の BLAST(配列相同性検索プログラム)実行するためのリンクが 表示されます。

Search parameters

klc_031308p_cptac_study6_6B011.mgf
Trypsin/P: cuts C-term side of KR.
Carbamidomethyl (C)
<u>Oxidation (M)</u>

MS data file : 入力データファイルの名称

Enzyme : 切断パターン

その他、検索で使用したパラメーターに関する情報が表示されます。

Protein sequence coverage: 44% Matcherstein sequence coverage: 44%

続いてタンパク質全長に対してマッチしたペプチドがどの部位にあたるのか、その割合についての 情報が表示されます。Coverage とは、全長に対するマッチペプチド残基数の割合です。マッチした ペプチド部分が赤の太字で表現されています。

Unformatted	sequence string:	639 residues	(for pasting	into other ap	plications).					
Sort by residue number resid				$^{\bigcirc}$ decreasing mass Iso						
Query	Start - End	Observed	Mr(expt)	Mr(calc)	ppm M	Score	Expect	Rank	U	Peptide
₫ <u>4341</u>	24 - 34	607.8089	1213.6033	1213.6051	-1.46 0	39	0.00013	1		R. VDIIANDQGNR. T
⊠ <u>6135</u>	35 - 47	729.3478	1456.6810	1456.6835	-1.71 0	29	0.0013	1	U	R. TTPSFVGFTDTER. L
₫ <u>6879</u>	55 - 69	796.3790	1590.7434	1590.7460	-1.64 0	32	0.00068	1	U	K.NQAAMNPANTVFDAK.R
₫ <u>6880</u>	55 - 69	531.2552	1590.7438	1590.7460	-1.39 0	19	0.013	1	U	K. NQAAMNPANTVFDAK. R
⊠ <u>6962</u>	55 - 69	804.3763	1606.7380	1606.7409	-1.83 0	37	0.00019	1	U	K.NQAAMNPANTVFDAK.R + Oxidation (M)
₫ <u>6963</u>	55 - 69	804.3763	1606.7381	1606.7409	-1.77 0	20	0.0093	2	U	K.NQAAMNPANTVFDAK.R + Oxidation (M)
⊠ <u>5694</u>	75 - 86	697.3038	1392.5930	1392.5980	-3.58 0	25	0.0029	1	U	R.NFNDPEVQGDMK.H
₫ <u>6686</u>	111 - 124	775.8977	1549.7809	1549.7810	-0.099 0	22	0.006	1		K.NFTPEQISSMVLGK.M
⊠ <u>5251</u>	125 - 136	664.3303	1326.6461	1326.6489	-2.13 1	30	0.0011	1		K.MKETAESYLGAK.V
⊠ <u>5253</u>	125 - 136	443.2230	1326.6473	1326.6489	-1.20 1	27	0.0019	1		K.MKETAESYLGAK.V
⊠ <u>3052</u>	127 - 136	534.7619	1067.5093	1067.5135	-3.88 0	26	0.0027	1		K.ETAESYLGAK.V
								-		

タンパク質全長の下にはマッチしたペプチドが、アミノ酸残基順(デフォルト設定の場合)に並んでリスト 表示されています(上図)。表示されている情報は以下の通りです。

Unformatted sequence string :

	残基数と共に配列をコピーしやすくなるページが開きます。他のアプリケーションで
	配列を使用したい場合に便利です。
Sort by	: リストの並び順を指定します。残基番号、質量の昇順/降順 が選択できます。
Show	:マッチしたペプチドのみをリストに表示させるか、マッチしなかった理論ピークも
	表示させるかを選択します。
Query	: Query 番号。入力データについてペプチド質量の小さい順に付けられた番号。
Start-End	: タンパク質全長におけるアミノ酸残基番号。
Observed	: ピークリストファイルの m/z。
Mr(expt)	: ピークリストの値から計算されたペプチドの質量。
Mr(calc)	: 配列から計算されたペプチドの質量。
Delta	: Mr(expt) – Mr(calc)。
М	: Missed cleavage.
Score	: Mascot Ions score、実験値のMS2ピークと理論値とのマッチング度合いを表します。
Expect	: query 毎に計算される期待値、スコアと同定基準値から算出。
Rank	: データベース中の候補ペプチドとマッチングを行った際、ペプチド配列とのマッチング
	が全体の中での何位であったかを示します。
U	: U マークがついている場合、他のエントリーと共有されていない Unique ペプチドで
	ある事を意味します。
Peptide	: ヒットしたペプチド配列。修飾や前後のアミノ酸残基なども併せて表示されます。

ページ下部で表示されているグラフはともにピークのマッチングの誤差を表すグラフです(上図)。横軸 は実験データ側のペプチド質量で縦軸が誤差です。含まれている事が確実なタンパク質でこのグラフを 確認する事で、パラメーターで指定した誤差範囲(peptide tol.)の設定値が適切であったかどうかを確認す る事ができます。

ID	HSP72_YEAST Reviewed; 639 AA.
AC	P10592; D6VXY0;
DT	01-JUL-1989, integrated into UniProtKB/Swiss-Prot.
DT	23-JAN-2007, sequence version 3.
DT	05-FEB-2025, entry version 242.
DE	RecName: Full=Heat shock protein SSA2;
GN	Name=SSA2; OrderedLocusNames=YLL024C; ORFNames=L0931;
OS	Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast).
OC	Eukaryota; Fungi; Dikarya; Ascomycota; Saccharomycotina; Saccharomycetes;
OC	Saccharomycetales; Saccharomycetaceae; Saccharomyces.
OX	NCBI_TaxID=559292;
RN	[1]
RP	NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RC	STRAIN=ATCC 204508 / S288c;
RX	PubMed=2644626; DOI=10.1093/nar/17.2.805;
RA	Slater M.R., Craig E.A.;
RT	"The SSA1 and SSA2 genes of the veast Saccharomyces cerevisiae.";

画面の最下部には<mark>タンパク質の詳細情報</mark>が表示されます(上図)。ただしデータベースに対して、情報表示に関する適切な設定が MASCOT 側で行われている時のみ表示されます。

7-4. Peptide View

Summary 画面、あるいは Protein view 画面で Query 番号のハイパーリンクをクリックすると、 MS/MS データと理論フラグメントピークとのマッチング度合いなどを確認できる Peptide View の 画面が現れます(次頁図)。
Matrix Mascot Search Results

Peptide View

MS/MS Fragmentation of **IINEPTAAAIAYGLDK**

Found in P10592 in UP2311_S_cerevisiae, Heat shock protein SSA2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=SSA2 PE=1 SV=3

Match to Query 7200: 1658.885668 from(830.450110,2+) intensity(29102.746) scans(9314) rawscans(sn9314) rtinseconds(4381.2834) index(6805)

Title: 6806: Scan 9314 (rt=4381.28) [C:¥Downloads¥klc_031308p_cptac_study6_6B011.RAW] Data file klc_031308p_cptac_study6_6B011.mgf

ペプチド配列並びにこのペプチドがアサインされたタンパク質の情報が表示されます(上図)。 また入力データ側の情報として、query 番号や title 行の情報、そして元のファイルのパスや名称に関する 情報も表示されます。

続いて、入力データのスペクトルベースで見たマッチングの確認画面 (上図)が表示されます。理論値と マッチした場所が赤で表示されます。また表示領域の設定や、マッチング図のファイル出力に関する アイコンも併せて表示されています。色の設定なども変更可能です。なおここで使用されている(Xi Spectrum Viewer は、エジンバラ大学の Rappsilber 研究室によって開発され、Artistic License 2.0 で 公開されています。また関連するいくつかのアイコンは、Farm-fresh web icons, released under the Creative Commons Attribution 3.0 License.から引用されています。

このグラフでは、peptide molecular ion 周辺のピークがスペクトルから除去されています。MASCOT の検索ではこのピークを使わないのでその事を反映させるためですが、別の場所で表示させた元の スペクトルと見た目が変わる事があるのでご注意ください。 Monoisotopic mass of neutral peptide Mr(calc): 1658.8879 Fixed modifications: Carbamidomethyl (C) (apply to specified residues or termini only) Ions Score: 45 Expect: 3.2e-05 Peak matches: 31/172 fragment ions using 42 most intense peaks Annotated fragments: 87/172 (help)

#	а	a++	a*	a*++	b	b++	b*	b*++	Seq.	У	y++	у*	y*++	#
1	86.0964	43.5519			114.0913	57.5493			Ι					16
2	199.1805	100.0939			227.1754	114.0913			I	1546.8112	773.9092	1529.7846	765.3959	15
3	313.2234	157.1153	296.1969	148.6021	341.2183	171.1128	324.1918	162.5995	N	1433.7271	717.3672	1416.7005	70 <mark>8.8</mark> 539	14
4	442.2660	221.6366	425.2395	213.1234	470.2609	235.6341	453.2344	227.1208	E	1319.6842	660.3457	1302.6576	651.8324	13
5	539.3188	270.1630	522.2922	261.6498	567.3137	284.1605	550.2871	275.6472	Р	1190.6416	595.8244	1173.6150	587.3111	12
6	640.3665	320.6869	623.3399	312.1736	668.3614	334.6843	651.3348	326.1710	Т	1093.5888	547.2980	1076.5623	538.7848	11
7	711.4036	356.2054	694.3770	347.6921	739.3985	370.2029	722.3719	361.6896	Α	992.5411	496.7742	975.5146	488.2609	10
8	782.4407	391.7240	765.4141	383.2107	810.4356	405.7214	793.4090	397.2082	Α	921.5040	461.2556	904.4775	452.7424	9
9	853.4778	427.2425	836.4512	418.7293	881.4727	441.2400	864.4462	432.7267	Α	850.4669	425.7371	833.4403	417.2238	8
10	966.5619	483.7846	949.5353	475.2713	994.5568	497.7820	977.5302	489.2687	I	779.4298	390.2185	762.4032	381.7053	7
11	1037.5990	519.3031	1020.5724	510.7898	1065.5939	533.3006	1048.5673	524.7873	Α	666.3457	333.6765	649.3192	325.1632	6
12	1200.6623	600.8348	1183.6358	592.3215	1228.6572	614.8322	1211.6307	606.3190	Y	595.3086	298.1579	578.2821	289.6447	5
13	1257.6838	629.3455	1240.6572	620.8322	1285.6787	643.3430	1268.6521	634.8297	G	432.2453	216.6263	415.2187	208.1130	4
14	1370.7678	685.8876	1353.7413	677.3743	1398.7627	699.8850	1381.7362	691.3717	L	375.2238	188.1155	358.1973	179.6023	3
15	1485.7948	743.4010	1468.7682	734.8877	1513.7897	757.3985	1496.7631	748.8852	D	262.1397	131.5735	245.1132	123.0602	2
16									K	147.1128	74.0600	130.0863	65.5468	1

続いて理論値の一覧表をベースとしたマッチングの確認画面が現れます(上図)。表の上にはペプチドの 質量や修飾、スコアと期待値の情報が表示されます。「Matches」の行については少し補足説明をします。

Peak matches: 31/172 fragment ions using 42 most intense peaks **Annotated fragments:** 87/172 (<u>help</u>)

MASCOT では入力データについてピーク強度等を基に再構成を行います。入力データ(mgf などピーク リストファイル)にあるすべてのピークがマッチング・スコアリングに使われるわけではありません。

172 は表の中の数字すべて、その中で理論値と実測値がマッチしたのが 31(表の中の赤い文字の数 すべて)であった事を意味します。42 most intense peaks は、入力データのうち 42 のピークが入力 データ側の代表ピークとして使われていることを示しています。"Annotated fragments"の分母である 172 は先ほど同様、理論フラグメントピーク全てで、87 はスコアリングに使用されなかった実験データ側の ピークをすべてカウントした場合の数値です。

表の中で使用されている文字の色・形態についても補足説明をします。5種類あります。

<u>赤・太子科体</u> : イオノンリーム単位で有意と判定され、スコアリノクに大さく
--

- 赤・太字 : イオンシリーズ単位ではぎりぎり有意と判定、スコアリングへの影響は小
- 赤・太字でない : マッチはしたがイオンシリーズ単位ではランダムマッチの域を超えないという判断で、
 スコアリングには不使用
- 青 : マッチングのピーク選定の際に選ばれなかった m/z でスコアリングにも使用されて いないが、数値としては理論値と一致
- 黒 : マッチしていない、mgf 側にもピークがない

赤色の中で区別されるポイントは、イオンシリーズ単位で見てマッチした数が多いかどうかランダム マッチを超えていると言えるほどの数がマッチしているかどうかです。

マッチング表の下に表示されるグラフはともにピークのマッチングの<mark>誤差</mark>を表すグラフで、左が Da、 右が ppm で表現されています(上図)。ともに横軸は実験データ側のフラグメントの質量で、縦軸が誤差 です。含まれている事が確実なペプチドでこのグラフを確認する事で、誤差範囲(MS/MS tol.)の設定値が 適切であったかどうかを確認する事もできます。

続いて、ヒットしたペプチド配列を NCBI の BLAST で検索するためのリンク、並びに BLAST を稼働して いるその他の外部サイトへのリンクが表示されています(上図)。

All matches to this query								
Score	Mr(calc)	Delta	Sequence					
45.0	1658.8879	-0.0022	IINEPTAAAIAYGLDK					

最後に、該当queryにおいてデータベース検索でマッチングとスコアリングを行ったほかの結果について、 rank順に表示します(上図)。今回の例は refinement を実施したこともあり top1 のみ表示されています。

Score	Mr(calc)	Delta	Sequence	Site Analysis
83.4	1846.7179	0.1889	DIGSESTEDQAMEDIK	Phospho S4 84.56%
75.8	1846.7179	0.1889	DIGSESTEDQAMEDIK	Phospho S6 14.73%
62.7	1846.7179	0.1889	DIGSESTEDQAMEDIK	Phospho T7 0.72%
26.9	1846.7808	0.1261	KLNSNPENYCESELK	
22.8	1846.7729	0.1339	KMEDSVGCLETAEEVK	

Refinement を実施しない場合などで、該当 query とデータベース内に存在する他のペプチド配列との間 におけるマッチング結果について、それぞれの配列とスコアが表示されます。また複数の候補が 1 つの修飾 がペプチド内で複数の箇所につく可能性がある場合 Sequence 列の右側にアミノ酸残基位置特定の確率 が表示されます。上記例では 4 番目の S にリン酸基が付く確率が 84.56%、6 番目の S に付く確率が 14.73%である事を示しています。

7-5. Export 機能によるペプチドベースの検索結果ファイル出力

同定結果をファイル出力する事ができます。7-2-11 で紹介した Report builder では同定タンパク質に 着目したファイル出力でしたが、同定ペプチド情報をベースとしてまとめたファイルや、その他解析結果に 関連するファイルの出力をするには、7-2-3 で紹介した Export 機能を利用します。

Export の選択肢で希望するファイルフォーマットを選択し「Export」ボタンを押します。

出力を希望するパラメーターを選択したうえで、画面 最下部にある「Export search results」ボタンを 押し、続いて現れる画面で「Download」ボタンを 押す事で、サーバー側でのファイル作成とそのファイ ルのクライアントへのダウンロードが始まります。

出力されるファイルの項目のうち、XML ファイル 出力に関する詳細については以下2つの URL を ご参照 ください。

https://www.matrixscience.com/xmlns/schema/mas cot_search_results_2/mascot_search_results_2.xsd

https://www.matrixscience.com/xmlns/schema/mas cot_search_results_2/index.html

SCIENCE		Search this site
Home Access Mascot Server Data	base search help Contact	
Mascot database search > Access Mascot Serve	r > Export search results	
Export search results		Help
Export format	CSV V	
Significance threshold p<	0.05 at Oidentity Chomolo	gy
Target FDR (overrides significance threshold if set)	<not set=""> V</not>	
FDR type	Distinct PSMs	
Display non-significant matches		
Max. number of hits	AUTO	
Min. number of sig. unique sequences	1 •	
Protein scoring	OStandard MudPIT	
Include same-set protein hits (additional proteins that span the same set of peptides)		
Include sub-set protein hits (additional proteins that span a sub-set of peptides)	1	
Group protein families	2	
Require bold red		
Show Percolator scores		
Preferred Taxonomy*	All entries	~

Query title Unassigned queries (peptide matches not assigned to protein hits) Show duplicate peptides		
Query Level Information	0	
Query title		
seq(), comp(), tag(), etc.		
Query level search parameters		
MS/MS Peak lists		
Raw peptide match data		
Show command line arguments	Export search results	
	©202	1 Matrix Science Links

export で CSV として出力されたファイルの表示列について、次頁以降で説明します。

prot_hit_num	同定タンパク質ファミリーの順位				
prot_family_member	同定タンパク質がファミリーの中で割り振られたサブの番号				
prot_acc	タンパク質の Accession				
prot_desc	タンパク質の Description				
prot_score	タンパク質のスコア(アサインペプチドのスコアをもとに算出)				
prot_thresh	同定基準値(タンパク質、PMFの時のみ)				
prot_expect	期待値(タンパク質、PMF のみ)				
prot_mass	タンパク質の配列から計算された質量				
prot_matches	タンパク質にアサインされた query 数				
prot_matches_sig	タンパク質にアサインされた、有意基準を超える query 数				
prot_sequences	タンパク質にアサインされたペプチド数				
prot_sequences_sig	タンパク質にアサインされた、有意基準を超えるペプチド数				
prot_cover	シーケンスカバレージ				
prot_len	タンパク質の残基長				
prot_pi	タンパク質の配列から計算された予測等電点				
prot_tax_str	生物種情報				
prot_tax_id	NCBIの Taxonomy ID				
prot_seq	タンパク質の配列				
prot_empai	emPAI				
prot_acc_alpha	クロスリンクペプチドの結果における、1つめのタンパク質の Accession				
prot_acc_beta	クロスリンクペプチドの結果における、2 つめのタンパク質の Accession				
pep_query	ペプチドの query 番号				
pep_rank	ペプチドの rank(マッチング順位)				
pep_isbold	1有意基準を超えている、0…有意基準を超えていない				
pen isunique	ユニークペプチド(タンパク間でシェアされていない)かどうか。1…ユニーク 0…				
Pop_man	ユニークでない				
pep_exp_mz	ペプチド・実験値側の の m/z				
pep_exp_mr	ペプチド・実験値側の質量				
pep_exp_z	ペプチド・実験値側の 電荷				
pep_calc_mr	ペプチド・理論値側の質量				
pep_delta	ペプチドの質量誤差、実験値 - 理論値				
pep_start	タンパク質におけるペプチド残基の位置、開始点				
pep_end	タンパク質におけるペプチド残基の位置、終了点				
pep_miss	該当ペプチドにおける misssed clavage の数				
pep_score	Mascot Ions Score(queryのマッチングスコア)				
pep_homol	queryの homology treshold(homology 同定基準値)				

pep_ident	queryの identity threshold(identity 同定基準値)				
pep_expect	query の期待値				
pep_res_before	タンパク質において該当ペプチドの1つ前に存在するアミノ酸残基				
pep_seq	ペプチドの配列				
pep_res_after	タンパク質において該当ペプチドの1つ後ろに存在するアミノ酸残基				
pep_frame	翻訳のフレーム番号(塩基配列の検索時のみ)				
pep_var_mod	Variable の修飾				
	Variableの修飾がペプチド内で存在する位置を数字の文字列で表しています。				
nen war mod nos	「.」で挟まれたのがペプチドで数はペプチド残基長と同じ、最初の「.」の前が N 末				
pep_var_mod_pos	端、最後の「.」の前が C 末端です。0 は修飾がないことを、数字は各修飾に割り当				
	てられた修飾の番号(ファイル上部に表示)を意味します。				
	「pep_var_mod」の補足で、同時に1つのアミノ酸残基に修飾がついているケース				
pep_summed_mod_pos	に対応するための項目です。				
pep_local_mod_pos	Query レベルでの「pep_var_mod_pos」と同様の情報				
pep_var_mod_conf	複数の修飾候補領域が同一ペプチド内にある場合、各位置における同定確率				
pep_num_match	スコアに使用されたフラグメントマッチの数				
pep_scan_title	ピークリストの「title」行に記された情報				
pep_source	データベースの種類 (AA, NA, XA, SL)				
	クロスリンクの状況を表す、3数字 x 2 で構成された文字列。				
	例: 1:0:6,2:5:7.				
pep_linked_sites	アルファペプチド (= 1) のペプチド上の位置 0 (N-term)でリンカーの選択肢が				
	6 (リンカーと番号の結びつきは「Linkers table」にあります) 。一方ベータペプチ				
	ド (= 2)のペプチド上の位置は 5残基目、リンカーの選択肢は 7。				
pep_res_before_beta	クロスリンクペプチド、ベータペプチドの pep_res_before				
pep_seq_beta	クロスリンクペプチド、ベータペプチドの pep_seq				
pep_res_after_beta	クロスリンクペプチド、ベータペプチドの pep_res_after				
pep_frame_beta	クロスリンクペプチド、ベータペプチドの pep_frame				
pep_var_mod_beta	クロスリンクペプチド、ベータペプチドの pep_var_mod				
pep_var_mod_pos_beta	クロスリンクペプチド、ベータペプチドの pep_var_mod_pos				
pep_summed_mod_pos_beta	クロスリンクペプチド、ベータペプチドの pep_summed_mod_pos				
pep_local_mod_pos_beta	クロスリンクペプチド、ベータペプチドの pep_local_mod_pos				
nen monolink mod nos	クロスリンクペプチドのうちモノリンクペプチドだったケースでの修飾が付いた				
pep_monomik_mou_pos	アミノ酸残基の位置				
pep_monolink_mod_pos_beta	クロスリンクペプチド、ベータペプチドにおける「pep_monolink_mod_pos」				
pep looplink pos	クロスリンクペプチド、ループリンクペプチドだったケースでの、ループ残基の				
L-L-L-MANNELAAD	位置				
pep_looplink_pos_beta	クロスリンクペプチド、ベータペプチドにおける「pep_looplink_pos」				

8. PMF: タンパク質同定

8-1. PMF タンパク質同定のまとめ

この章では PMF でのタンパク質同定において説明いたします。重要な点を列挙すると以下の通りです。

- ・PMF では1度の検索で基本的に1種類のタンパク質が同定される [8-4]
- 入力データセットはピーク作成時とマッチング時の2段階で選別・組み換え される [8-2]
- •スコアとは理論値と実測値のマッチング度合いを評価した数値で、高いほどよく マッチしている [8-4]
- ・検索対象のエントリー数をもとに同定基準値が計算される。スコアが同定基準値 を超えた時タンパク質を同定とみなす(デフォルト値の場合信頼度 95%)[8-4]
- ・タンパク質間でシェアされているペプチド情報に十分注意して結果を解釈 する必要がある [8-5]
- ・「検索対象のデータベースの選択」も結果に大きく影響する [8-3]

以降、順に説明いたします。

8-2. 入力データの調整

入力データは2段階で調整されます。3-1-1 で説明したように、MASCOT Server ではスペクトルデータ をそのまま受け付けておらず検索の前段階でペプチドのピークを抽出しノイズをカットしたものを入力 データとして受け付けていて、これが1段階目の調整にあたります。入力データに m/z に加え強度情報も 含まれている場合、MASCOT Serverの検索プログラムは入力データから強度情報に基づいて10種類の 入力データのサブセットを作成し、それぞれのサブセットに対して理論ピークとのマッチングを行って最も スコアが高くなった結果を採用します。このように MASCOT Server 側で強度情報を使ってデータの 再構成を行うのが2段階目の調整です。

MASCOT Server プログラムは2段階目の処理を行う事ができますが、あくまでもピーク抽出という1段 階目の前処理が行われていることを前提としています。また、上述のようにサブセットの選別に強度情報 を使っていますが、マッチングの評価そのものに関してはピーク強度の情報を利用していません。強度の 高いピークに対してマッチするとよりスコアが高くなる、というような判断はありません。

8-3. 配列から計算される理論ピーク値

入力データとマッチングを行う参照側は、配列から計算されたタンパク質の理論的なピークリストです。 検索時に指定したデータベースに登録されているタンパク質1つ1つに対して、パラメーターをもとに理論 ペプチドを作成しその質量を計算します。タンパク質毎の理論ペプチドセットを作成して、入力データとの マッチングを行います。この検索方法では「答が含まれているデータベース」で検索をしなければ同定 できません。データベースに含まれないタンパク質を答えとしてレポートする事はなく、同定タンパク質の 検出も行われません。しかし 8-4 で説明するように、登録エントリー数が多いデータベースで検索をすると 同定基準値が高くなり同定には不利です。データベースの選択は検索対象が小さすぎず大きすぎない、 必要十分なエントリーが含まれるデータベースである必要があります。

> >sp|A0A0C4DH27|TRGV8_HUMAN_T_cell_receptor_gamma_variable_8 MLLALALLLAFLPPASQKSSNLEGRTKSVTRPTGSSAVITCDLPVENAVYTHWYLHQEGKAPQRL LYYDSYNSRVVLESGISREKYHTYASTGKSLKFILENLIERDSGVYYCATWDR

2 - 18	1778.1070	0	LLALALLLAFLPPASQK
2 - 25	2521.4632	1	LLALALLLAFLPPASQKSSNLEGR
2 - 27	2750.6058	2	LLALALLLAFLPPASQKSSNLEGRTK
19 - 25	761.3668	0	SSNLEGR
19 - 27	990.5094	1	SSNLEGRTK
19 - 31	1433.7587	2	SSNLEGRTKSVTR
26 - 27	247.1532	0	TK
26 - 31	690.4024	1	TKSVTR
26 - 60	3886.9312	2	TKSVTRPTGSSAVITCDLPVENAVYTHWYLHQE
28 - 31	461.2598	0	SVTR
28 - 60	3657.7886	1	SVTRPTGSSAVITCDLPVENAVYTHWYLHQEGK
28 - 64	4110.0382	2	SVTRPTGSSAVITCDLPVENAVYTHWYLHQEGK
32 - 60	3214.5394	0	PTGSSAVITCDLPVENAVYTHWYLHQEGK
32 - 64	3666.7889	1	PTGSSAVITCDLPVENAVYTHWYLHQEGKAPQF
32 - 74	4941.3821	2	PTGSSAVITCDLPVENAVYTHWYLHQEGKAPQF
61 - 64	470.2601	0	APQR
61 - 74	1744.8533	1	APQRLLYYDSYNSR
61 - 83	2685.3875	2	APQRLLYYDSYNSRVVLESGISR
65 - 74	1292.6037	0	LLYYDSYNSR
65 - 83	2233.1379	1	LLYYDSYNSRVVLESGISR
65 - 85	2490.2755	2	LLYYDSYNSRVVLESGISREK
75 - 83	958.5447	0	VVLESGISR
75 - 85	1215.6823	1	VVLESGISREK
75 - 94	2224.1488	2	VVLESGISREKYHTYASTGK
84 - 85	275.1481	0	EK
84 - 94	1283.6146	1	EKYHTYASTGK
84 - 97	1611.8257	2	EKYHTYASTGKSLK
86 - 94	1026.4771	0	YHTYASTGK

8-4. 同定タンパク質:マッチングとスコア、同定基準値、期待値

アルゴリズムは非公開ですが、基本的な考え方についてご説明いたします。

スコア (S)

実測スペクトルと理論スペクトルとのマッチング度合いを表します。スコアが高いほど両スペクトルが良く マッチしている事を表しています。MASCOT は Probability based scoring、確率論ベースのスコアリング です。実測スペクトルと理論スペクトルのマッチングがランダムな事象である確率を Pro とした場合、スコア は-10Log10(Pro)と表すことができます。

同定基準値(St)

検索毎に計算される同定基準。同定基準は検索エンジンが算出した信頼度 95%を満たすスコアです。 PMF の場合、同定基準値は検索対象となったデータベースのエントリー数を基に算出されます(データ ベースのエントリー数が非常に少ない場合など一部例外のケースもあります)。スコア1位の結果でも同定 基準値を超えない限りそのタンパク質が同定されたとはみなしません。

期待值 (Expect)

検索対象のデータベース中に、同様のランダムマッチをする事が期待されるタンパク質の数。デフォルト 設定では、<mark>期待値が 0.05 より小さい時同定</mark>としています。

スコアと同定基準値、期待値の関係

Expect = 0.05 \cdot 10^{-(S-St)/10}

MASCOT の検索アルゴリズムの基となっているのは Mowse です。詳細は以下のページから ご覧下さい。

https://www.matrixscience.com/help/history.html https://www.matrixscience.com/help/scoring_help.html

8-5. protein inference: ユニーク/シェア ペプチド、タンパク質のグループ化

データベースに登録されているタンパク質は互いに類似の配列を持っている事があり、切断ペプチド 単位でみても同じペプチド配列、同じ質量の組み合わせをもつタンパク質が存在する事があります。検索 結果はペプチド質量ピークの組み合わせから同定の判定を行いますが、質量分析装置のデータだけでは これら類似配列のタンパク質を見分ける事が難しかったり、不可能であったりするケースがあります。

結果解釈の際 MASCOT Server がこれらのデータをどのように扱っているのか、ユーザー側が注意する べき点はどこか、についてご紹介します。

ある PMF 検索の結果について、13 のピーク(入力データ側)がデータベースに登録されている複数の タンパク質とマッチしたケースを想定します。そのうち4つのタンパク質にフォーカスを当て、どのように ペプチドピークがマッチしているかを表したのが以下の表です。「■」がマッチしていることを表し、「■」は ピックアップした4つのタンパク質のうち1種類のタンパク質でしかマッチしていない事を表します。この ようなペプチドはよく「ユニークペプチド」と表現します。一方複数のタンパク質にマッチしている場合、 それを「シェアペプチド」と表現します。

ピーク	OPSD_HUMANO	OPSD_PHOVI	OPSD_MACFA	OPSD_CRIGR
832.662				
903.342				
1186.439				
1403.722				
1617.857				
1727.916				
1743.951				
1759.966				
1788.721				
1818.963				
2159.143				
2174.812				
2256.871				

この4つのタンパク質を含む検索結果画面が次頁図です。

○である OPSD_HUMAN と ○の OPSD_PHOVI は 1 位のグループとしてまとめられています。一方
 ○の OPSD_MACFA と OPSD_CRISR は2位、3位として別に報告されています。

前頁の表と上図の結果を見比べると、まとめられ方の理由がユニークペプチドの有無である事がわかり ます。OPSD_PHOVI は OPSD_HUMAN が持っていないペプチドが存在しません。OPSD_PHOVI が はっきりと存在する理由がないため、OPSD_HUMANのグループに属して表示されます。MASCOTでは、 マッチしたペプチドの組み合わせが全く同じものを same-set,包含関係にあるものを sub-set と 呼びます。same-set や sub-set のタンパク質はグループとしてまとめられ、基本的にはグループの中で 最もスコアが高い、あるいはデータベースに含まれている順番の関係で選ばれた代表タンパク質のみが 考慮の対象となります。OPSD_PHOVI は OPSD_HUMAN の subset と認定されています。

一方〇のタンパク質 OPSD_MACFA と OPSD_CRISR は、表の「■」が示すように、○のタンパク質 OPSD_HUMAN にはマッチしていなかったピークとマッチしています。PMF 検索ではこのような場合、 異なるタンパク質がそれぞれ含まれている可能性を考慮し、異なるグループとして認識され、順位も別に して表示されます。実際に、OPSD_HUMAN の他に OPSD_MACFA や OPSD_CRIGR が本当に別に 含まれていたかについてはケースバイケースで、確率はあまり高くないと言えます。「■」のピークの部分 がランダムマッチである可能性は低くなく、否定できないためです。ユニークなペプチドマッチは MIS 検索 の場合、1つ1つのペプチドについてプロダクトイオンマススペクトルとのマッチングを行い確からしさを評 価しているため意味合いがより重くなります。同定基準を超えているしているユニークなペプチドの存在は、 それぞれのタンパク質が同定できたと考えるための根拠となります。

このように、PMF では類似タンパク質の同定(区別)について難しい点を含んでおり、それを回避する ためには MALDI の測定で両者を隔てるカギとなるペプチドを取り出して MS2 データを測定し MIS を行 ったり、最初からショットガンなど MIS 検索を実施する必要があります。

9. MIS: ペプチド同定とタンパク質同定

9-1. MIS ペプチド同定とタンパク質同定のまとめ

この章では MIS でのペプチド同定とタンパク質同定について説明いたします。重要な点を列挙すると 以下の通りです。

- 各 query の検索は独立して行われる。 [9-3]
- •入力データはピーク作成時とマッチング時の2段階で選別・組み換えされる [9-2]
- •スコアとは理論値と実測値のマッチング度合いを評価した数値で、高いほどよく マッチしている [9-4]
- ・スコアが同定基準値を超えた時ペプチド配列の同定とみなす [9-4]
- ・検索対象のデータベースの選択も結果に大きく影響する [9-3]
- ・結果の信頼度が99%以上となるように同定基準が調整される [9-4,11章]
- ユニークな同定ペプチドが1つ以上アサインされているタンパク質を同定タンパク質とみなす [9-5]
- タンパク質間でシェアされているペプチド情報に十分注意して結果を解釈する
 [9-6]

以降、順に説明します。

9-2. 入力データの準備

PMF では入力データとして1つのスペクトルデータを受け付けていました。一方 MIS では **3-1-3** で ご紹介しているように、BEGIN IONS からはじまり END IONS で終わる領域を1つの query としますが、 1ファイルの中に複数の query を含めてそれらを同時に検索する事ができます。

入力データの各 query データは、2 段階で選別・組み分けされます。3-1-2, 3-1-3 でご案内したように、

MIS のデータでは スペクトルデータをそのまま受け付けておらず検索の前段階でフラグメントの質量を 反映したピークを抽出しノイズをカットしたものを入力データとして受け付けており、これが 1 段階目の 調整です。MASCOT Server 側では受け取ったデータに対してさらに強度情報に基づいて入力データから サブセットデータを作成し、それぞれのサブセットに対して理論値とのマッチングを行って最もスコアが 高くなった結果を採用しており、これが 2 段階目の調整に当たります。このように MASCOT Server プログラム側でも 2 段階目の処理を行っていますが、これはあくまでも 1 段階目の前処理としてピーク 抽出が行われていることを前提としています。また、サブセットの選別に強度情報を使っていますが、 マッチングの評価そのものに関してはピーク強度の情報を利用していません。強度の高いピークに対して マッチするとよりスコアが高くなる、というような判断はありません。

9-3. ペプチド配列から行う理論値計算、ペプチドのフィルターリング

フィルターリングと理論値生成、入力データとのマッチングまでの流れを示したのが前頁図です。入力 データとマッチングを行う参照側はペプチド配列から計算されたフラグメントの理論的なピークリストです (データベースの配列タイプがAA,NAの場合)。検索時に指定したデータベースに登録されているタンパク質 1つ1つに対して、パラメーターをもとに理論ペプチドを作成しその質量を計算します。生成したペプチドに ついて質量を計算し、query と指定誤差範囲内でマッチしたペプチドのみを残す作業を最初に行います (フィルターリング)。残ったペプチドのみ、理論フラグメントのピークを生成し、入力データ MS2 のピーク リスト部分とマッチングを行ってその結果をスコアリングします。

9-4. 同定ペプチド:マッチングとスコア、同定基準値、期待値、外挿的な評価

9-4-1. refinement を実施しない場合のスコアや同定基準値

以下のスコア・同定基準値・期待値・外挿的な評価、についてはペプチドに対してのもので、かつ検索時に refinement を実施しない場合です。タンパク質の評価については **9-5** をご覧ください。

スコア (S)

実測スペクトルと理論スペクトルとのマッチング度合いを表します。スコアが高いほど両スペクトルが 良くマッチしています。MASCOT のスコアリングは確率論に基づいています。実測スペクトルと理論 スペクトルのマッチングがランダムな事象である確率を Pro とした場合、スコアは-10Log₁₀(Pro)と表す 事ができます。

同定基準値(St)

query 毎に計算される同定基準です。2種類あり、それぞれ Identity threshold と Homology threshold という名称ですが、配列の同一性や類似性などは名称と関係がありません。 両者は常に Identity threshold スコア \geq Homology threshold スコア という関係性があり、また Homology threshold は存在しない事があります。現在の MASCOT の結果画面では基本的に Homology threshold を同定基準値とし、以下に説明する期待値の計算などにも利用しています。 Homology threshold がない場合は Identity threshold が同定基準値となります。スコアが1位の 結果でも、同定基準値を超えない限りそのペプチド配列が同定されたとはみなしません。

期待值 (Expect)

検索対象のデータベース中に、同様のマッチングがランダムで起こった場合に見つかってくるであろう ペプチド数。検索エンジンのデフォルト設定では<mark>期待値が 0.05 より小さい時同定</mark>とします(FDR を同定 基準として適用した場合を除く)。スコアと同定基準値、期待値には以下の関係が成り立ちます。

Expect =
$$0.05 \cdot 10^{-(S-St)/10}$$

外挿的な評価:FDR

当初 MASCOT をはじめとする各種検索エンジンは各々の同定基準、MASCOT でいえば有意基準を 超える信頼度 95%に該当する同定基準値のみをレポートに提示していました。しかし論文に提出される 検索結果について疑念を持たれるケースなどが発生する中で、各検索エンジンの同定基準について別の 観点から評価をする事が好ましいと考えられるようになりました。また後述する同定ペプチドと同定 タンパク質の関係性から、信頼度に該当する数値は 95%でなく 99%の方が好ましいと考えられるように なりました。これらの事を踏まえ外挿的に評価する FDR という数字を各検索結果で算出し、それが 1%と なるように同定基準を調整するようになり、現在はその方法が主流になっています(但し MASCOT で提示 される同定基準はデフォルト設定の場合信頼度 95%のまま)。同定基準値は、FDR が 1%となるよう調整 されます。検索時、パラメーター「Target PSM FDR」の数字を 1%とする事で実現可能です。FDR に ついては 11 章で詳しく説明します。

9-4-2 refinement を実施する場合のスコアや同定基準値

Refinement については、11 章にて詳しく説明します。

ここでは、Refinement を実施した場合、結果にて表示されるスコア、期待値、同定基準値がそれぞれ何を 意味するのかについて説明します。

Refinement 実施により、Percolator プログラムが稼働します。Percolator は MASCOT に対して p-value, q-value, PEP(posterior error probability)を返します。Refinement を実施した場合、 MASCOT の結果で示されるスコアや期待値は、PEPを基にしたスコアの表現に置き換わります。

スコア -10log₁₀(PEP) 期待値 PEP

9-5. 同定ペプチドから導き出される同定タンパク質

9-5-1. 同定タンパク質=ユニークな同定ペプチドが1つ以上アサインされている

スペクトルデータと理論値のマッチングを行う際、理論値の生成元はあくまでもペプチド配列です。 ペプチドスコアや期待値はペプチドの測定データが、マッチング対象であるペプチド配列である事の確から しさを表していることになります。

一方 MASCOT ではタンパク質のスコアも表示されます。タンパク質のスコアは、そのタンパク質に アサインされたペプチドのスコアをもとに算出されます。タンパク質のスコアが高い事は、信頼度が高く スコアも高いペプチドが多く存在する事を意味します。しかし現在 MASCOT ではタンパク質のスコアを もとに同定タンパク質であるかどうかを判定する事はしていません。

現在 MASCOT で採用されている同定タンパク質を判定する基準は、同定基準を超え、他のタンパク質

にはアサインされていないユニークなペプチドが1つ以上アサインされているかどうかとなります (sub-set,same-set を除く)。この基準は現在各所で広く採用されていますが、同定タンパク質の内容に 厳密性を持たせようとした場合、False Positive が混ざってしまう可能性があるという問題があります (9-5-2 で説明します)。

9-5-2.1 Hit wonders:同定タンパク質の Sensitivity と Specificity

ペプチド FDR 1%を同定基準とした場合、ユニークな同定ペプチドが1つのみアサインされている タンパク質を100集めると、False Positive、すなわち本来不正解の配列であるにも関わらず同定基準を 超えて同定ペプチドと判定されているペプチドが1つ見つかります。そのペプチドがアサインされている タンパク質も False Positive です。MASCOT がレポートする同定タンパク質の信頼度のレベルがまさに このレベルということになります。このようなタンパク質の存在を指して「1 Hit wonders」問題という事が ありますが、より厳しい基準を求めるケースでは、同定タンパク質を判定する際に最低限アサインされて いるペプチド数を 2 に引き上げる事で問題を回避できます。False Positive がランダムマッチであると 考えると、2つの False Positive ペプチドが数多くあるデータベース内のタンパク質に対して同時に アサインされることはほとんどない、というのがその根拠です(ポワソン分布)。ただし必要な同定ペプチド 数2にすると、同定タンパク質数は大きく低下します。求める信頼度に応じてユーザーが基準を使い分ける 必要があります。

9-6. protein inference: ユニーク/シェア ペプチド、タンパク質のグループ化

データベースに登録されているタンパク質は互いに類似の配列を持っていることがあり、測定結果に おいて複数エントリーで完全に同一である配列部分の切断ペプチドが同定される事もしばしばあります。 質量分析装置のデータだけではこれら類似配列のタンパク質を見分ける事が難しかったり、不可能で あったりするケースがあります。結果解釈の際 MASCOT Server がこれらのデータをどのように扱って いるのか、ユーザー側が注意するべき点はどこか、についてご説明します。

同定ペプチドが複数タンパク質にシェアされている場合を「シェアペプチド」、唯一のタンパク質に アサインされている場合を「ユニークペプチド」と呼びます。MASCOT においてシェアペプチドとユニーク ペプチドがアサインされている状況により同定タンパク質がどのように扱われるかを説明するために、7つ のタンパク質 A~G、5つのペプチド p1~p5 を使って同定タンパク質のグループ分けをします。5つの ペプチドが各タンパク質にアサインされている状況を「■」(または「■」)で表したのが以下の表示です。

	ペプチド				タンパク質	Ę		
	ペプチド配列	Α	В	С	D	E	F	G
p5	LVQDVANNTNEEAGDGTTTATVLAR							
p4	ALMLQGVDLLADAVAVTMGPK							
p3	ISSIQSIVPALEIANAHR							
p2	VGGTSDVEVNEK							
p1	NAGVEGSLIVEK							

タンパク質 A を中心に、シェアされているペプチドの状況によって A 以外のタンパク質をどのように みなすのかを記したのが次頁の図です。

proteinB のように、proteinA と全く同じ組み合わせのペプチドが同定されているケースを same-set protein と呼んでいます。また proteinC,D,E のように proteinA の一部のペプチドが同定されていて包含 関係的に proteinA の方が上位で proteinA に含まれないペプチドが存在しない場合、sub-set protein と呼んでいます。same-set や sub-set については代表タンパク質が1つのみが表示され、それ以外の タンパク質は結果表示画面に現れません。

一方、proteinF や proteinG のように、proteinA にアサインされているペプチドと共有するペプチド (シェアペプチド)があるものの、proteinA にはアサインされていないユニークペプチドもある場合、 proteinA とは異なる同定タンパク質としてリストに表示されます。同時にシェアペプチドを含む分だけ 配列が似ているという事でそれらは「Family Protein」としてまとめられます。またペプチドがシェアされ ている状況をもとに類似度を表す樹形図のようなクラスター表示も併せて表示されます。

下図は検索結果です。protein A~G まですべて含むデータベースで、ペプチド p1~p5 が同定される ようなデータで検索しましたが、結果の初期表示には proteinA,F,Gの3種類のみが表示されます。

▼1 -	eshold (0): 0.0	02 0 0	1 ProteinA 2 ProteinF 3 ProteinG		249 148 136	9 desa 8 desa 5 desa	:1 :6 :7	
		Sco	ore Mass	Matches	Sequences			
2 1.1	✓ProteinA	2	9096	3 (3)	3 (3) d	esc1		
	1 sameset of Pr	oteinA						
☑ 1.2	ď ProteinF	1	.48 12054	2 (2)	2 (2) d	esc6		
1.3	ďProteinG	1	.36 11389	2 (2)	2 (2) d	esc7		
Redisplay	All None							
▼5 peptide r ☑ Auto-fit t	matches (5 non-dup to window	olicate, 0 dup	licate)					
uery Dupes	Observed	Mr(expt)	Mr(calc)	Delta M S	Score Expect	Ranl	U 1 2	3 Peptide
മ്1	608.3099	1214.6052	1214.6506	-0.0455 0	75 2.8e-08	▶1	U 🖉	R.NAGVEGSLIVEK
2 2	617.2857	1232.5569	1232.5885	-0.0316 0	76 2.7e-08	▶1	U	R.VGGTSDVEVNEK.N
₫3	960.0327	1918.0509	1918.0636	-0.0127 0	85 3.1e-09	▶1		ISSIQSIVPALEIANAHR
2 4	1057.0537	2112.0929	2112.1323	-0.0394 0	116 2.6e-12	▶1	U 🔳	ALMLQGVDLLADAVAVTMGPK.M
ď 5	854.0588	2559.1545	2559.2413	-0.0868 0	74 4.3e-08	▶1	•	K.LVQDVANNTNEEAGDGTTTATVLAR
∢ ▶3 subsets a	and intersections (3	subset prote	eins in total)	-		-		

前ページ下部の図について、以下に詳しく説明します。

クラスター表示は本来であれば各タンパク質の配列相同性を専用アルゴリズムで計算した結果を使用 するのが好ましいですが、計算の簡易化のため MASCOT では互いのユニークペプチドのスコアをもとに 類似度を算出しています。そのため本来ファミリータンパク質に属するような 配列の類似度をもつ タンパク質がグループ化されなかったり、逆にシェアされた数少ないペプチドの存在の影響により、類似度 が高くないタンパク質がファミリータンパク質としてまとめられる事があります。

same-setや sub-set のタンパク質はデフォルト表示では確認できませんが、結果画面内から展開表示 させるとその内容を確認する事ができます。前頁のオレンジで囲った部分の三角の部分、展開ボタンを クリックすると、下図のように該当タンパク質を表示させることができます。ProteinA と same set である ProteinB, subset である proteinC, proteinD, proteinE も表示されます。

		Score	Mass	Matches	Sequences
🗹 1.1	⊿ ProteinA	249	9096	3 (3)	3 (3) desc1
	▼1 sameset of ProteinA				
	✓ProteinB	249	9855	3 (3)	3 (3) desc2
🗹 1.2	⊿ ProteinF	148	12054	2 (2)	2 (2) desc6
1 .3	⊿ ProteinG	136	11389	2 (2)	2 (2) desc7
Redispla	ay All None				

▼3 subsets and intersections	(3 subset proteins in total)										
	Score	Mass	Subset of								
✓ProteinC	177	9288	1.1	desc3							
✓ProteinD	146	9947	1.1	desc4							
ZProteinE	116	11608	1.1	desc5							

CSV などでファイル出力させる場合は、same-set のタンパク質も出力させるか選択する事ができます。 また sub-set についても出力のオプションがあり、共有されるペプチドの度合いの情報を使って出力 タンパク質の調整が可能です。

10. MASCOT 検索のオプション [MIS]

9 章までは汎用的に使用されるペプチド同定・タンパク質同定を中心とした説明でした。一方で MASCOT では通常の検索とは少し使い方が異なる、いくつかの検索オプションが存在します。この章では MIS で使用可能な 4 つの検索オプションについて説明いたします。なおこれらのオプションは PMF では すべて実施できません。

10-1. Spectral Library	: ピークリストライブラリに対する検索
10-2. Quantitation	:定量解析
10-3. crosslink	: クロスリンクペプチド検索
10-4. Error Tolerant Search	:拡張2段階検索

10-1.Spectral Library

10-1-1. Spectral Library 概要

初期のプロテオミクス・DDA の解析では入力データの参照先データとして、配列から計算された理論値 が使用されてきました。一方解析データの蓄積により、検索に使用したピークリストデータと正解と みなされるペプチド配列の組み合わせに関する情報が蓄積し、それを検索に利用する試みが行われる ようになりました。

MASCOT でも Spectral Library(ピークリスト情報と正解のペプチド配列情報を含むデータベース)に 対する検索を行う事ができます。Spectral Library 単独または FASTA データベースと組み合わせて検索 が可能です。検索エンジンには NIST Mass Spectrometry Data center の MS PepSearch (<u>https://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:mspepsearch</u>)を利用しています。 また検索対象の Spectral Library には、インターネット上で公開されているデータベースと、ご自身の検索 結果から作成したものの2種類を利用する事ができます。MS PepSearch 検索時には以下のような引数で 実行しています。

* 下記は本来一行で実行するコマンドです。

MSPepSearch.exe m a P /ZPPM 100 /M 0.509902 /LIB [ライブラリへのパス] /INP [MGF ファイルへのパス] /OUTTAB [出力ファイ ルへのパス] /HITS 10 /MinMF 0 /NumCompared /OutPrecursorMz /OutDeltaPrecursorMz /OutSpecNum

検索結果例として、以下の WEB ページをご覧ください。

https://www.matrixscience.com/cgi/master_results_2.pl?file=../data/F981140.dat

ピークリストライブラリは右図のような msp という フォーマットで MASCOT Server 上に格納されています。 ライブラリには、インターネット上で公開されているものを 利用する方法と、ご自身の MASCOT Server で行った 検索結果をライブラリ化してセットして利用する方法が あります。

Name: SIPAYLAETLYYAMK/3
MW: 2021.0820791015626
Comment: Spec=Consensus Mods=2/0,^,iTRAQ4plex/
Parent=674.702
DeltaMass=0.00 ClusterId=5258eb56-ee94-44f7-8a
Protein=splANXA5 HIMANI
Num peaks: 29
114 111 757 8
115 108 810 71
116 111 950 41
117 115 010 85
130.070 1030.9
232.142 282.79
291.216 257.88
299.142 91.74
317.232 79.55
327.174 28.27
332.161 61.64
345.226 312.34
346.22 72.4
422.257 104.24
429.089 26.44
444 417 1426 25
485 322 22 68

10-1-2. Spectral Library 検索方法

MASCOT Server で Spectral Library に対して検索を行うためには、データベースの選択時に Spectral Library を選んで検索するだけです(下図)。Spectral Library はデータベース一覧の中で 「Spectral Library(SL)」と記された箇所の下にまとめて存在します。

маѕсот	MS/MS Ions Search		
Your name Search title Database(s)	Contaminants (AA)	Ema	Mus EST
		× ×	Plants_EST Prokaryotes_EST Rodents_EST Vertebrates_EST Spectral library (SL) NIST_Mouse_IonTrap NIST_S.cerevesiae_IonTrap PRIDE_Contaminants PRIDE_Human
Taxonomy	All entries		♥

Spectral Library 検索では Modification, enzyme, missed cleavages, taxonomy, instrument, charge などのパラメーターは指定しても無視されます。この検索では単純に入力データとライブラリ とのマッチングを行うため、通常検索で理論値の発生パターンを変更させたり、検索対象を調整するような パラメーターが使用する事ができないためです。

また現段階では Decoy データベースへの検索並びに FDR 計算を行う事ができません。Error Tolerant 検索も行う事ができません。

10-1-3. Spectral Library の検索結果

<u>https://www.matrixscience.com/cgi/master_results_2.pl?file=../data/F981140.dat</u>の結果をもとに説明いたします。必要に応じて上記 WEB ページも併せてご参照ください。

結果画面の表示内容

FASTA で検索を行った時と概ね同じです。表示内容を調整する「Format」欄で、使用できない一部 の項目が表示されません。タンパク質 Accession をクリックした際に表示される protein view、 ペプチドの query 番号をクリックした際に表示される peptide view の表示内容も通常の検索と同じ です。タンパク質の配列については Spectral Library 内にはありませんがタンパク質の ID 情報が 含まれており、かつ Spectral Library 作成時に同じ Accession 系列の配列データベースを設定してい るためそちらから配列情報を取得し結果画面などで表示されます。

■ Score と同定基準

検索エンジンとして使用している NIST MSPepSearchのスコアは0(一致しない)から999(完全一致) の範囲で表されます。ライブラリ検索のみを行った場合は特にこのスコアの補正などは行われません。 同定基準スコアは 300 となっています。期待値については、スコア s の時の期待値 E(s)を以下の式 から計算しています。

 $E(s) = 0.05 \cdot 10^{(300 - s)/100}$

■ FASTA データベースと Spectral Library を一緒に検索した時

検索例として以下の WEB ページも併せてご覧ください。

<u>https://www.matrixscience.com/cgi/master_results_2.pl?file=../data/F981141.dat</u> この例のように Spectral Library 検索と FASTA 検索が統合された結果の場合、同定基準を使った期待値 の調整が行われます。ライブラリと FASTA のマッチの期待値について、両者でマッチしているデータを 使ってその平均と分散が同じになるように調整をします。例として query1451 の調整の様子を以下の 図で表示します。ライブラリだけの検索では同定基準スコアが 300 で期待値が 0.00012 でしたが、 FASTA と共に行った検索では同定基準が 493 に、期待値が 0.0044 になっています(両者のスコアは 共に 561 です)。

ライブラリ単独での検索結果

⊠1 451	453.2757	904.5369	904.5381	-1.37 0	561 SL	0.00012 <u>1</u>	U K.AKEFGILK.K
₫1452	302.5196	904.5370	904.5380	-1.16 0	589 SL	6.4e-05	re > 300 indicates identity
M 1720	466 2325	930 4505	930 4521	-1 81 0	772 ST.	9 50-07	

ライブラリ+FASTA での検索結果

⊿1 451	453.2757	904.5369	904.5381	-1.37 0	561	SL	0.0044	U K.AKEFGILK.K
⊠1 452	302.5196	904.5370	904.5380	-1.16 0	589	SL	0.0016 🕨 1	Mascot score > 20 indicates identit
₫ 1720	466.2325	930.4505	930.4521	-1.81 0	772	SL	2.2e-06 🕨	Library score > 493 indicates identi

10-1-4. Spectral Library をローカルの MASCOT Server にセットする方法

詳細は、データベース管理マニュアル(日本語版)

<u>https://www.matrixscience.co.jp/supportpdf/MASCOTServer_ver26_sequencedbmanage.pdf</u>のP.52~ をご覧ください。

インターネット上で公開されているライブラリをセットする方法は P.53~、ご自身の MASCOT Server で 行った検索結果をライブラリ化してセットする方法は P.83~ をご覧ください。

10-1-5. Spectral Library 補足説明資料へのリンク

■ 弊社インターネットサイトでのヘルプページ

https://www.matrixscience.com/help/spectral_library.html

■ MSPepSearch について

 Stein, S. and Scott, D. R. (1994). Optimization and testing of mass spectral library search algorithms for compound identification, *J. Am. Soc.Spectrom.*, 5, 859-66 https://dx.doi.org/10.1016/1044-0305(94)87009-8

■ PRIDEの Spectral Library について

- Griss, J., Foster, J. M., Hermjakob, H., and Vizcaíno, J. A., PRIDE Cluster: building a consensus of proteomics data, *Nature Methods* 10, 95–96 (2013) https://dx.doi.org/10.1038/nmeth.2343
- <u>Griss, J., et al., Recognizing millions of consistently unidentified spectra across hundreds of shotgun</u> proteomics datasets, *Nature Methods* 13, 651–656 (2016) <u>https://dx.doi.org/10.1038/nmeth.3902</u>

■ Spectral Library の公開元サイト

- <u>PeptideAtlas / ISB</u>
 <u>http://www.peptideatlas.org/speclib/</u>
- <u>NIST</u> http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:cdownload
- <u>PRIDE / EBI</u>
 <u>https://www.ebi.ac.uk/pride/cluster/#/libraries</u>

10-2. Quantitation

10-2-1. Quantitation 概要

質量分析データを用いたタンパク質の定量解析には様々なアプローチがあります。その中でピークリスト ファイルに出力された情報、または検索結果の情報だけを使う手法については MASCOT Server 単独で 定量計算が可能です。具体的には以下の手法です (手法名は MASCOT 内で使用している呼称)。

- ・reporter : MS2 スペクトル内のある領域のフラグメントピークの相対的な強度に基づいた定量
- ・multiplex : MS2 スペクトル内のイオンシリーズのフラグメントピークの相対的な強度に基づいた 定量

・emPAI : タンパク質にアサインされたペプチドの情報に基づく定量指標。
 Spectral Counting の1種。

このうち emPAI については、MS/MSスペクトル数 が 100 以上の時自動的に結果画面に表示されます。

上記3手法以外については raw データから プレカーサーペプチドに関する追加の情報を得る 必要があり、MASCOT Server 単独では定量計算 ができません。弊社ソフトウェアで言えば MASCOT Distiller 定量モジュールがあれば計算が可能です(右図)。

検索結果例としては以下の WEB ページをご参照ください。

https://www.matrixscience.com/cgi/master_results_2.pl?file=../data/F981131.dat

10-2-2. Quantitation 検索方法

検索パラメーター「Quantitation」で、予め設定して おいた定量手法の組み合わせを選択して検索を行うだけ です(右図)。定量に使用する修飾なども Quantitation の 各項目に紐づけられているため、それらをあえて Modification から指定する必要はありません。 デフォルト設定の名称については、名称の後ろに「MD」が 付いている項目が MASCOT Distiller が必要な手法で、 ついていないものが Server 単独で計算可能な手法です。

定量手法の組み合わせを自身でカスタマイズしたり 新たに作成したりするのは専用の設定画面で行います。 10-2-4,13-8 で詳しく説明いたします。

Enzyme	Trypsin 🗸	
Quantitation	None	~
Crosslinking	iTRAQ 4plex	Î
Fixed nodifications	iTRAQ 4plex (protein) iTRAQ 8plex TMT 6plex TMT 2plex	
<u>Variable</u> nodifications	DiLeu 4plex 180 multiplex SILAC K+6 R+6 multiplex IPTL (Succinyl and IMID) multiplex ICPL duplex pre-digest [MD] ICPL duplex post-digest [MD] ICPL quadruplex pre-digest [MD] 180 corrected [MD]	
Peptide tol. ±	15N Metabolic [MD]	
ptide charge Data file	15N + 13C Metabolic [MD] SILAC K+6 R+10 [MD] SILAC K+6 R+10 Arg-Pro [MD]	,

10-2-3. Quantitation 検索結果

後ろに[MD]が付いていない Quantitation の項目を選択した状態で検索を行った際、結果画面では 各ペプチドの定量値とそのペプチドがアサインされているタンパク質の定量値が表示されます(下図)。

				Scor	e Mass	Matches	Seque	er :es	emPAI 1	14/113 11	5/113 11	6/113 11	7/113 11	8/113 1	19/113	121/113	1
2 1.1	₫2	::CO4B_I	HUMAN	16434	2 217600	3818 (3818)	103	(: 03)	48.75	1.033	1.070	1.045	1.016	1.155	1.051	1.055 0	c nplement C
2 1.2	₫2	::CO4A_I	HUMAN	16385	6 217680	3814 (3814)	102	(1 02)	44.57	1.036	1.073	1.044	1.019	1.159	1.052	<u>1.060</u>	c hplement C
Redis	Redisplay All None 下に拡大図①																
₹3926	peptide	matches	(363 non-du	plicate, 3	563 duplicate)										下に	「拡大図	20
🗹 Auto	o-fit to v	vindow						_							115	- 1/4/ 12	1 6
Qu	ery Dup	es	Observed	Mr (ex	pt) Mr(calc) ppm M	Score	Expe	t Rank	U 114/113	115/113	116/113	117/113	118/113	119/11	3 121/113	1 2 Pep
₫ 52	618		517.3046	1032.5	946 1032.598	3 -3.52 0	22	0.02	6 🕨 1	0.909	1.155	0.945	-0.096	1.064	1.202	0.791	E K.G
₫58	592 🕨 1		533.2921	1064.5	596 1064.570	3 -0.64 0	30	0.0079	9 🕨	1.084	1.260	1.285	1.150	1.313	1.346	1.099	K.A
₫58	697		533.7829	1065.5	512 1065.554	3 -2.90 0	24	0.01	2 1	0.973	1.420	0.857	0.963	0.734	0.820	0.850	■ K .A
₫ 62	050 14		548.3186	1094.6	226 1094.623	8 -1.08 0	29	0.004	7 1	0.864	1.101	0.889	0.795	1.075	0.821	0.879	K.L
₫70	990 🕨 4		598.2969	1194.5	792 1194.579	2 0.033 0	17	0.024	4 1	0.959	1.120	0.871	0.952	1.154	0.969	0.880	R.V
₫79	303		419.2471	1254.7:	195 1254.714	0 4.38 0	29	0.01	5 1	1.006	0.954	1.220	0.793	1.234	0.837	0.896	R.E
₫81	345 6		634.8576	1267.70	006 1267.701	4 -0.570	32	0.001	4 1	1.1/1	1.311	1.458	0.999	1.210	0.912	0.953	R.G
₫ 81	352 1	2	423.5749	1267.70	029 1267.701	4 1.180	35	0.0006	1 1	0.934	1.581	1.814	0.721	0.943	0.883	0.946	R.G
201	457 2	7	635.3070	1268.5	994 1268.598	9 0.460	24	0.023	3 F 1 2 b .	1.030	1.090	1.039	1.069	1.396	1.159	1.218	K.F.
200	483 22	4	423.8742	1076 5	108 1268.598	9 1.51 0	30	0.0022	2 P 1	1.015	0.846	1.267	0.816	1.345	1.500	0.890	K.F.
es	em	PAI	114/1	13 1	115/113	3 116/	113	117	/113	118/	113	119/1	13 12	21/11	3		
3)	4	8.75	1.03	3	1.070	1.0	945	1.	.016	1.1	55	1.05	1	1.055	Ce		
2)	4	4.57	1.03	6	1.073	1.0)44	1.	.019	1.1	59	1.05	2	1.060	C C		
		拡大	【 [[[[]														
	۲	pect	Rank	U 1	14/113	115/113	116/	'113	117/1	13 118	3/113	119/11	3 121	L/113	1 2 1	Peptide	
	6	.026	▶1		0.909	1.155	0.9	45	-0.09	96 1.	064	1.202	0	.791		C. GQAGL	QR.A
	-	0079	▶1		1.084	1.260	1.2	85	1.15	01.	313	1.346	1.	.099		(. AAANQI	MR.N
	•	.012	1		0.973	1.420	0.8	57	0.96	30.	734	0.820	0.	.850	I	(.AAANQ	MR.N + D
	-	0047	▶1		0.864	1.101	0.8	89	0.79	51.	075	0.821	0.	.879		C. LTSLS	DR.Y
	6	.024	▶1		0.959	1.120	0.8	171	0.95	21.	154	0.969	0.	.880		R.VQQPD	CR.E
	þ	.015	1		1.006	0.954	1.2	20	0.79	31.	234	0.837	0	.896		R.EFHLH	GR.L

アサインされている各ペプチドの定量値からタンパク質の定量値がどのように計算されるかについては、 「Quantitation」パラメーターで選択された項目にデフォルト設定が定義されているほか、検索結果画面 から再調整する事が可能です(下図、赤線で囲われた黄色の領域)。

Format	Significance threshold p< Target FDR (overrides sig. thre	shold) ((0.05	Max. number of families FDR type	AUTO PSM	〕 ✔	⊠[help]
	Display non-sig. matches			Min. number of sig. unique sequences		_	
	Show Percolator scores			Dendrograms cut at	<u> </u>		
	Preferred taxonomy	A	All entries		~		
	Protein ratio type Mediar	ı	~	Normalise to None	~		₫[help]
	Min. precursor charge 1			of all peptides			
	Min. # peptides 2]		 of peptides assigned to acce 	ssion(s)		
	Unique peptides only						
	Outlier removal Automa	atic	~	 of peptide sequence(s) 			
	Peptide threshold At leas	t homology	/ 🖌 0.0	5			

パラメーターで設定できる事項については以下の通りです。

Prote	ein ration type	: ペプチドの ratio からタンパク質の ratio をどのように計算するか指定
-	Average	: ペプチド ratio の幾何平均
-	Median	: ペプチド ratio の中央値
-	Summed intensit	ies : (reporter プロトコルのみ)ピーク強度の和
Min.	precursor charge	: ペプチド定量値の計算対象とするペプチド電荷の最小値
Min.	# peptides	: タンパク質定量値の計算対象とする、最低限必要なアサインペプチド数
Uniq	ue peptides only	: ユニークペプチドのみを計算に利用するかどうか
Outli	er removal	: 外れ値を除く方法の指定、以下から選択
-	None	: 外れ値を除く処置を行わない
-	Automatic	: データ数によって Dixon 法または Rosner 法のどちらかを選択
-	Dixon's method	: Dixon 法
-	Grubbs' method	: Grubbs 法
-	Rosner's method	: Rosner 法
Pept	ide threshold	: 定量計算対象とするペプチドについて、スコアや期待値、同定基準値を 使ったフィルターリング
Norn	nalise to	そうたうイルターランク : データの Normalisation 実施。サンプル間比較で、サンプルに属する ペプチドの ratio を使って調整
-	None	: normalisation を実施しない
-	Average ratio	: ペプチドの ratio について幾何平均が同じになるようにする
-	Median ratio	: ペプチドの ratio について中央値が同じになるようにする
-	Summed intensit	ies : (reporter プロトコルのみ) MS/MS スペクトルのレポーターイオンの
		強度の和が同じになるようにする

さらに上記 Normalisation について計算の対象を特定する事が可能です。各サンプルで等量含まれている事が確定している内容を選択可能です。選択肢はすべてのペプチド、配列が特定 されたペプチド(複数指定可)、Accession で特定されたタンパク質(複数指定可)にアサインされているすべてのペプチド、です。

タンパク質の定量値をまとめた情報を ファイル出力したい場合、**Report Builder** をご利用ください。

結果画面の Report Builder タブで 「Columns」を展開し、出力内容で定量値を 選択の上「**Apply**」ボタンを押します (右図)。

Proteins (545) Report Builder Unassigned (140931) §.perm														<u>§ permali</u> ı	
Pro	otein	fa	mily memb	ers (545 protein	s)										
) C	Columns (19 out of 58)														
▶Fi	Filters: (none)														
Exp	oort as (CSV													
<u>∱Fa</u>	<u>mily</u>	М	<u>DB</u>	Accession	Score	Mass	<u>114/113</u>	<u>115/113</u>	<u>116/113</u>	<u>117/113</u>	<u>118/113</u>	<u>119/113</u>	<u>121/113</u>	<u>Matches</u>	Match(sig)
1		1	SwissProt	del::CO4B_HUMAN	164342	217600	1.033	1.070	1.045	1.016	1.155	1.051	1.055	3818	3818
1		2	SwissProt	d 2::CO4A_HUMAN	163856	217680	1.036	1.073	1.044	1.019	1.159	1.052	1.060	3814	3814
2		1	SwissProt	Z::APOB_HUMAN	127385	624988	1.082	1.362	0.827	1.203	1.189	1.093	1.079	3897	3897
3		1	SwissProt	Z::CERU_HUMAN	59576	143199	0.884	1.080	0.711	1.047	1.283	1.027	1.027	1466	1466
4		1	SwissProt	d 2::A1BG_HUMAN	58870	58330	0.949	1.201	0.994	1.124	1.181	1.041	1.085	1527	1527
5		1	SwissProt	date::HEMO_HUMAN	44576	58934	0.970	1.161	0.940	1.086	1.334	1.053	1.103	1899	1899

Apply ボタンを押すと Report Builder の表示内容が変わります。ファイル出力は表示内容と同じ順番、 データが出力されるのでこの段階で好みの様式に調整してください。調整後「**Export CSV**」ボタンを押す とファイル出力が行われます。

10-2-4. Quantitation 設定の作成

Quantitation で選択する設定項目を利用する場合、予め MASCOT で作成済みである設定を使う場合 でも、ピークシフトなどの設定や修飾と定量計算に使用するかなどの内容についてより正確なデータ解析 を行うため微調整をした方が好ましいです。また事前に準備された設定内容とは大きく異なる方法で定量 を行う場合、新たに設定を作成する事もできます。

設定画面は **13-8** でご紹介している「Quantitation」(Home -> Configuration Editor -> **Quantitation**」で行いますのでそちらをご参照ください。

I	自動保存 💽		?• ୯° -	d	ata_F981131	L_dat_rf_rep	ortbuilder.cs	/• 📃	₽ 検索							鈴木	(高江洲)宏智	8 🗉		•	×
7	Pイル ホ ー	-6 挿入	ページ レイ	アウト 数	式 データ	校閲 湯	示 へけ	Acroba	it										🖻 共有	כאב 🖓	2F
[贴	, 3	游ゴシック B I	<u>∪</u> • ⊞ •	 ✓ 11 ✓ <u>A</u> 	A^ A [×] ≣ ×	= = = = = =	≫~ 8	折り返して全く セルを結合して	体を表示する C中央揃え ~	標準 EG ~ %	9 58 4	◆ 条件付き 80 条件付き 書式 ◆	テーブルとして 書式設定 >	セルの スタイル ~			∑ オート SUM ▼ フィル ~ ◇ クリア ~	* Z 並べ替え フィルター・	く 使衆と ・ 選択 ~	デ ータ 分析	
クリ	グリプボード 5 2742ト 5 配置 5 数値 5 20イル セル 編集 分析 へ																				
A1	A1 · : × ✓ fr Search title · ·																				
	А	В	С	D	E	F	G	н	1	J.	к	L	м	N	0	Р	0	R	S	Т	
31	Normalisa	none	-	-	_		-			-		_			-				-	-	
32	Min. preci		1																		
33	Outlier ren	nauto																			
34	Min. num		2																		
35	Peptide th	at least h	nomology																		
36	Unique pe	no																			
37																					
38	Family	Member	Database	Accession	Score	Mass	114/113	115/113	116/113	117/113	118/113	119/113	121/113	Num. of m	Num. of si	Num. of se	Num. of si	emPAI	Descriptio	on	
39	1		1 SwissProt	CO4B_HU	164342	217600	1.033	1.07	1.045	1.016	1.155	1.051	1.055	3818	3818	103	103	48.75	Complem	ent C4-F	BC
40	1		2 SwissProt	CO4A_HU	163856	217680	1.036	1.073	1.044	1.019	1.159	1.052	1.06	3814	3814	102	102	44.57	Complem	ent C4-/	A C
41	2		1 SwissProt	APOB_HU	127385	624988	1.082	1.362	0.827	1.203	1.189	1.093	1.079	3897	3897	214	214	9.7	Apolipopr	otein B-	10
42	3		1 SwissProt	CERU_HU	59576	143199	0.884	1.08	0.711	1.047	1.283	1.027	1.027	1466	1466	50	50	14.97	Cerulopla	smin OS	5=
43	4		1 SwissProt	A1BG_HU	58870	58330	0.949	1.201	0.994	1.124	1.181	1.041	1.085	1527	1527	19	19	11.9	Alpha-1B	glycopr	ot
44	5		1 SwissProt	HEMO_HU	44576	58934	0.97	1.161	0.94	1.086	1.334	1.053	1.103	1899	1899	30	30	144.13	Hemopex	in OS=H	lor
45	6		1 SwissProt	CFAH_HU	37520	167416	0.962	1.13	0.872	1.103	1.306	1.096	1.132	1521	1521	65	65	21.74	Complem	ent facto	or
46	6		2 SwissProt	FHR2_HU	1329	36538	0.858	1.123	0.687	1.132	1.406	1.065	1.071	82	82	10	10	4.94	Complem	ent facto	or
47	6		3 SwissProt	FHR1_HU	1289	43717	0.903	1.191	0.816	1.152	1.356	1.068	1.112	80	80	13	13	7.39	Complem	ent facto	or
48	6		4 SwissProt	FHR5_HU	699	77592	0.896	1.249	0.941	1.018	1.496	1.075	1.116	35	35	7	7	0.52	Complem	ent facto	or
49	7		1 SwissProt	ITIH2_HU	35418	126842	1.025	1.183	0.915	1.233	1.264	1.103	1.099	1126	1126	42	42	16.62	Inter-alph	a-trypsi	n i
50	8		1 SwissProt	FETUA_H	l 35203	45131	0.907	1.074	0.652	1.071	1.233	0.928	1.019	753	753	15	15	8.63	Alpha-2-H	IS-glyco	pr
51	9		1 SwissProt	CFAB_HU	31648	103009	0.95	1.164	0.815	1.115	1.362	1.09	1.086	843	843	43	43	21.75	Complem	ent facto	or
52	9		2 contamina	718067.1	3489	102935	0.911	1.08	0.762	1.027	1.424	1.001	1.078	95	95	5	5	0.31	(Bos taur	us) Com	ple
53	10		1 SwissProt	APOH_HU	30084	48761	0.936	1.118	0.707	1.168	1.338	0.972	1.002	751	751	21	21	27.28	Beta-2-gl	ycoprote	ain 🖵
-		data_	_F981131_c	lat_rf_repo	rtbu	\oplus							4								Þ
準備	睆了														優表	示設定		─	-	- + 100	3%

10-2-5. Quantitation 補足説明へのリンク

■ MASCOT の Quantitation 全般に関する HELP ページ

https://www.matrixscience.com/help/quant_overview_help.html

■ MASCOT の Quantitation 結果画面表示内容に関する HELP ページ

https://www.matrixscience.com/help/quant_format_help.html

■ ラベルフリー定量解析のチュートリアル [日本語]

https://www.matrixscience.co.jp/supportpdf/MascotDistiller_replicatesQuantTutorial.pdf

■ SILAC 解析のチュートリアル [日本語]

https://www.matrixscience.co.jp/supportpdf/MascotDistiller_Quantitative_quick_start.pdf

■ Reporter プロトコルの解析結果例(iTRAQ)

https://www.matrixscience.com/cgi/master_results_2.pl?file=../data/F981131.dat

■ Multiplex プロトコルの解析結果例 (SILAC K+6, R+6 multiplex) https://www.matrixscience.com/cgi/master_results_2.pl?file=../data/F981133.dat

10-3. Crosslink

10-3-1. Crosslink 検索 概要

MASCOT では質量分析のデータからタンパク質の立体構造解析やタンパク質間の相互作用解析に応用 される手法、ペプチドの crosslink 解析にも対応しています。

MASCOT で単一のペプチド同定を行うのとは異なり、候補ペプチドが N 個存在する crosslink 解析は N² のデータ数が解析対象となり莫大な数が対象となってしまう事から、検索対象を慎重に選定せざるを 得ません。検索前に crosslink 解析のターゲットとするタンパク質をかなり限定するとともに、リンカーの 種類や結合パターンを考慮する範囲を特定した設定を予め作成しておきパッケージ化しておいて、検索時 にその設定項目を選択します。これは「Quantitation」検索と同じ方式です。

予め設定しておく必要がある設定内容は以下の通りです。

- ・ リンカーの組成、リンカーが付くアミノ酸残基
- ・ crosslink で使用するリンカー
- ・ リンカーの結合パターン(下記4種類)
- リンカーが結合するタンパク質、またはデータベース

リンカーの結合パターンには以下の4種類があります。

- intralinks
 : 同一タンパク質内の別ペプチド間の結合
- ・**interlinks** : 異なる 2 種類のタンパク質のペプチド間の結合
- ・ **looplinks** : 同一ペプチド内での結合
- ・monolinks : リンカーの一方にのみ結合した状態(単純な修飾)

10-3-2. Crosslink 検索を行う方法

MASCOT で Crosslink 検索を行いたい場合、予め設定をしておいた Crosslinking 項目を選んで検索 を実行してください(下図)。

Taxonomy	All entries		~
Enzyme	Trypsin/P V		Allow up to
Quantitation	None	~	
Crosslinking	Disulfide bridge in Lysozyme	~	
Fixed			

Crosslinking 設定には、対象とするタンパク質(または非常に小規模のデータベース)も予め指定してお く必要があり、実質解析の度に何かしらの項目を変更したものを使用しなければならないと言えます。 設定変更については、10-3-5 で全体像に対する説明をしているほか、「13-5. Linkers」, 「13-9. crosslinking」の項目で設定画面についても詳しく説明しています。必要な場合はそちらも 併せてご参照ください。

10-3-3. Crosslink 検索に際し注意するべき MASCOT 設定値

Crosslink 検索において、2つのペプチドを組み合わせた数字が MASCOT Server 設定値の制限対象と なります。そのため通常の検索で問題にならないような設定値が、Crosslink 検索では不足し検索結果に 悪影響を及ぼす事があります。

関連する設定値は以下のようにまとめられます。Crosslink 検索を実施する場合は必要に応じてこれらの検索の設定値を変更して(数値を増やして)ください。

■ 両ペプチド合わせた数字が適用されるもの

- **MaxPepModArrangements** (Variable modification の組み合わせパターンについて考慮する 組み合わせ数の最大値)

■ 両ペプチドのうち長い方の数字が適用されるもの

- MinPepLenInSearch (検索対象とするペプチド長さの下限)
- MinPepLenInPepSummary (結果画面表示対象とするペプチド長さの下限)

■ それぞれのペプチドに対して適用されるもの

- missed cleavages (検索パラメーター)
- MaxPepNumVarMods (1 ペプチドにおいて考慮する Variable modification(種類)数の最大値)
- MaxPepNumModifiedSites (1 ペプチドにおいて考慮する、Variable modification を考慮する アミノ酸残基数の最大値)

設定不可な内容としてペプチドの質量の上限 (16kDa)という制限がありますのでご注意ください。2つ のペプチドの合計値に対して適用されます。また検索パラメーターの中で、Error tolerant, Decoy, Quantitation, そして検索後のオプション Percolator については Crosslink 検索と同時に行う事が できません。また設定値ではありませんが検索に影響を及ぼしやすいのがペプチドの電荷です。Crosslink 検索では各々の電荷が合算される事が多く、MS2 フラグメントピークの電荷も多価になる事が多くなる一 方、MASCOT Server では 2 価のフラグメントまでしか考慮できません。多価のフラグメントを 1 価に換算 してピークリストに書き込む(弊社ではこれを decharge と呼んでいます)事が可能であれば、そのような オプションによるピークリスト作成機能をご利用ください。弊社ソフトウェア MASCOT Distiller では decharge が可能ですので、ご興味がございましたら弊社までご連絡ください。

10-3-4. Crosslink 検索結果

以下の結果を使って説明いたします。より分かりやすい理解のためには、結果画面を開いてご参照 ください。ジスルフィド結合で、同一タンパク質内の結合を考慮した検索です。 <u>https://www.matrixscience.com/cgi/master_results_2.pl?file=../data/F002553.dat</u>

結果の表示は通常の検索とほぼ同じです。Crosslink ペプチドのスコアや同定基準、期待値の算出については通常検索と同様に行われます。

647.0693	2584.2480	2584.2712	-8.96 1 1	L 27	0.0028	▶1	υ 🔳	K. VFGRCELAAAMK.R C5<-Xlink:Disulfide->C1 R.CKGTDVQAWIR.G + Oxidation (M)
904.7667	2711.2782	2711.2605	6.54 0 -	- 93	2.7e-07	▶1	υ 🔳	R.NLCNIPCSALLSSDITASVNCAK.K + 3 Nethylmaleimide (C)
1356.6492	2711.2838	2711.2605	8.63 0 -	- 42	0.038	▶1	U 🔳	R.NLCNIPCSALLSSDITASVNCAK.K + 3 Nethylmaleimide (C)
1055.1664	3162.4774	3162.4602	5.42 1 -	- 114	2.1e-11	▶1	υ 🔳	K.FESNFNTQATNRNTDGSTDYGILQINSR.W
791.6272	3162.4795	3162.4602	6.10 1 -	- 37	0.00041	▶1	U 🔳	K.FESNFNTQATNRNTDGSTDYGILQINSR.W
680.3362	3396.6445	3396.6244	5.91 1 1	L 73	1.3e-07	▶1	υ 🔳	R.HGLDNYRGYSLGNWVCAAK.F C16<-Xlink:Disulfide->C1 R.CKGTDVQAWIR.G
850.1686	3396.6451	3396.6244	6.08 1 1	L 27	0.0031	▶1	υ 🔳	R.HGLDNYRGYSLGNWVCAAK.F C16<-Xlink:Disulfide->C1 R.CKGTDVQAWIR.G
1174.2014	3519.5823	3519.5679	4.090	91	2.8e-09	▶1	υ 🔳	R.NLCNIPCSALLSSDITASVNCAK.K C7<-Xlink:Disulfide->C3
880.9040	3519.5870	3519.5679	5.42 0 0) 75	8.4e-08	▶1	υ 🔳	$\label{eq:resonance} \begin{array}{l} R.NLCNIPCSALLSSDITASVNCAK.K C7<\!$

結果のペプチド表示において、2 つのペプチドとそのペプチドがどの位置で結合しているかが示されて います。例えば **query 1496** の結果(上図の緑で囲われた部分、下図は緑で囲われた部分の拡大図)を 見ると、最初に表示されたペプチド[αペプチド]の 7 番目の C と、後に表示されたペプチド(βペプチド)の 3 番目の C がリンカー「Xlink:Disulfide」(ジスルフィド結合の定義)で結合している事を示しています。

R.NLCNIPCSALLSSDITASVNCAK.K C7<-Xlink:Disulfide->C3 R.WWCNDGR.T + 2 Nethylmaleimide (C)

Query 番号をクリックするとマッチング内容を確認する peptide view ページを見る事ができます。 次頁図は query1496の peptide view です。

上図の緑で囲われた領域について、次頁以降にて詳しく説明します。

画面上部(下図)はスペクトルベースで理論値がどのようにマッチングしているのかを確認する事が できる画面で、クロスリンクされたペプチドそれぞれにα、βという記号を割り振り、マッチングがどちらの ペプチド由来のフラグメントなのかも示されています。

その下には理論値ベースのマッチング確認画面があり、これも両ペプチドそれぞれの理論値表が準備 されています。

#	b	b++	b*	b*++	b ⁰	b ⁰⁺⁺	Sec	I- Y	y++	У*	y*++	y ⁰	y ⁰⁺⁺	#
1	115.050	2 58.0287	98.023	7 49.5155	ō		N							23
2	228.134	3 114.5708	3 211.107	7 106.0575	ī		L	3406.532	3 1703.769	8 3389.505	8 1695.256	5 3388.5217	1694.764	5 <mark>22</mark>
3	456.191	1 228.5992	439.164	6 220.0859)		С	3293.448	2 1647.227	8 3276.421	7 1638.714	5 3275.4377	1638.222	5 21
4	570.234	1 285.6207	553.207	5 277.1074	ł		N	3065.391	4 1533.199	1533.1993 3048.3648		1 3047.3808	1524.194	0 <mark>20</mark>
5	683.318	1 342.1627	666.291	6 333.6494	ŧ.		I	2951.348	4 1476.177	9 2934.321	9 1467.664	6 2933.3379	1467.172	6 19
6	780.370	9 390.6891	763.344	3 382.1758	3		Р	2838.264	4 1419.635	8 2821.237	8 1411.122	6 2820.2538	1410.630	5 18
7	1816.735	2 908.8713	1799.708	7 900.3580)		С	2741.211	6 1371.109	4 2724.185	1 1362.596	2 2723.2011	1362.104	2 17
8	1903.767	3 952.3873	8 1886.740	7 943.8740	1885.756	7 943.382	20 <mark>S</mark>	1704.847	3 852.927	3 1687.820	7 844.414	0 1686.8367	843.922	0 <mark>16</mark>
9	1974.804	4 987.9058	3 1957.777	8 979.3925	5 1956.793	8 978.900)5 A	1617.815	2 809.411	3 1600.788	7 800.898	0 1599.8047	800.406	0 15
10	2087.888	4 1044.4479	2070.861	9 1035.9346	2069.877	9 1035.442	26 L	1546.778	1 773.892	7 1529.751	6 765.379	4 1528.7676	6 764.887	4 14
11	2200.972	5 1100.9899	2183.946	0 1092.4766	5 2182.961	9 1091.984	16 L	1433.694	1 717.350	7 1416.667	5 708.837	4 1415.6835	708.345	4 13
12	2288.004	5 1144.5059	2270.978	0 1135.9926	2269.994	0 1135.500)6 <mark>S</mark>	1320.610	660.808	6 1303.583	5 652.295	4 1302.5994	651.803	4 12
13	2375.036	6 1188.0219	2358.010	0 1179.5086	2357.026	0 1179.016	56 <mark>S</mark>	1233.578	617.292	6 1216.551	4 608.779	4 1215.5674	608.287	3 11
14	2490.063	5 1245.5354	4 2473.036	9 1237.0221	2472.052	9 1236.530)1 D	1146.546	573.776	6 1129.519	4 565.263	3 1128.5354	564.771	3 10
15	2603.147	6 1302.0774	2586.121	0 1293.5641	2585.137	0 1293.072	21 I	1031.519	516.263	1 1014.492	5 507.749	9 1013.5084	507.257	9 <mark>9</mark>
16	2704.195	2 1352.6013	8 2687.168	7 1344.0880	2686.184	7 1343.596	50 T	918.434	9 459.721	1 901.408	4 451.207	8 900.4244	450.715	8 8
17	2775.232	4 1388.1198	3 2758.205	8 1379.6065	2757.221	8 1379.114	45 A	817.387	3 409.197	3 800.360	7 400.684	0 799.3767	400.192	0 7
18	2862.264	4 1431.6358	8 2845.237	8 1423.1226	5 2844.253	8 1422.630)5 <mark>S</mark>	746.350	2 373.678	7 729.323	6 365.165	4 728.3396	364.673	4 6
19	2961.332	<mark>8</mark> 1481.1700	2944.306	2 1472.6568	2943.322	2 1472.164	18 V	659.318	1 330.162	7 642.291	6 321.649	4		5
20	3075.375	7 1538.1915	3058.349	2 1529.6782	3057.365	2 1529.186	52 N	560.249	7 280.628	5 543.223	2 272.115	2		4
21	3303.432	6 1652.2199	3286.406	0 1643.7067	3285.422	0 1643.214	47 C	446.206	8 223.607	0 429.180	2 215.093	8		3
22	3374.469	7 1687.7385	3357.443	2 1679.2252	3356.459	1 1678.733	32 A	218.149	9 109.578	6 201.123	4 101.065	3		2
23							К	147.112	8 74.060	0 130.086	3 65.546	8		1
#	b	b++	b*	b*++	b ⁰	b ⁰⁺⁺	Seq.	у	y++	у*	y*++	y ⁰	y ⁰⁺⁺	#
1	187.0866	94.0469					w							7
2	373.1659	187.0866					w	3334.4959	1667.7516	3317.4693	1659.2383	3316.4853	1658.7463	6
3	3060.3722	1530.6897					с	3148.4166	1574.7119	3131.3900	1566.1986	3130.4060	1565.7066	5
4	3174.4151	1587.7112	3157.3886	1579.1979			N	461.2103	231.1088	444.1837	222.5955	443.1997	222.1035	4
5	3289.4421	1645.2247	3272.4155	1636.7114	3271.4315	1636.2194	D	347.1674	174.0873	330.1408	165.5740	329.1568	165.0820	3
6	3346.4635	1673.7354	3329.4370	1665.2221	3328.4530	1664.7301	G	232.1404	116.5738	215.1139	108.0606			2
7							R	175.1190	88.0631	158.0924	79.5498			1

Summary の結果画面に話を戻します。crosslink 検索を行った場合、ファイル出力オプションで 「xiVIEW-CSV」というファイルが出力可能となります。

Timestamp : 7 Dec 2019 at 0	9:53:46 GMT				
Re-search All O Non-si 	gnificant O Unassigned	⊮[help]	Export	As xiVIEW-CSV	~
▼Search parameters Type of search Crosslinking Enzyme Variable modifications	: MS/MS Ion Search : Disulfide bridge in Ly : Trypsin/P	sozyme	p (M)		

このファイルは、サイト xiVIEW

https://xiview.org/xiNET_website/index.php

において、結合状況を図示可能な 入力データとして利用する事ができ ます。

10-3-5. Crosslinking 設定の作成

Crosslink の検索を行う際パラメーターとして設定項目を選択する必要がありますが、この項目に ついては検索内容に応じて予め設定を作成しておく必要があります。設定変更は、リンカーや結合対象と いった基本的な内容に加え、検索対象とするタンパク質またはデータベース名についても指定する必要が あるなど、若干複雑な構造となっています。リンカーの設定については「13-5. Linkers」を、また Crosslinking の項目自体の設定については、「13-9. crosslinking」の設定をご覧ください。

なお、crosslink 検索、特に interlink(タンパク質間の結合)は本来探索的な用途で利用したいケースも 多く、対象タンパク質が 1 つや2つで済まない事もしばしばです。しかし検索対象とするタンパク質は 多すぎると検索が終わらず、同定基準も高くなりあまり機能しません。私たちは目安として、ターゲットの タンパク質組み合わせは 100 まで、という提案をしています。これは intralink であれば 100 エントリー 程度、interlink であれば 10 エントリー(10x10=100)程度となり、デフォルト設定もそのようになってい ます。

10-3-6. Crosslink 補足説明へのリンク

■ Crosslink 検索 MASCOT HELP ページ https://www.matrixscience.com/help/crosslink.html

■ S-S 結合検索結果例

<u>https://www.matrixscience.com/cgi/master_results_2.pl?file=../data/F002553.dat</u> *同じ結果をお手元の MASCOT Server で開けば、この結果を再検索したり少し条件を変えた検索を試すことができます。 <u>http://localhost/mascot/cgi/master_results_2.pl?file=../data/F002553.dat</u>

■ DSS 結合検索結果例

<u>https://www.matrixscience.com/cgi/master_results_2.pl?file=../data/F002555.dat;_ignoreionsscorebelow=0.05</u> *同じ結果をお手元の MASCOT Server で開けば、この結果を再検索したり少し条件を変えた検索を試すことができます。 <u>http://localhost/mascot/cgi/master_results_2.pl?file=../data/F002555.dat;_ignoreionsscorebelow=0.05</u>

10-4. Error Tolerant Search

10-4-1. Error Tolerant Search 概要

MASCOT の MIS 検索で数多くの query を同時に検索した際、どのような配列ともマッチしない query が必ずと言っていいほど多数存在します。マッチしない理由として以下のような事が考えられます。

- 1. データベースにないペプチド配列だった
- 2. 指定した誤差範囲を超えていた
- 3. Precursor の電荷が適切でなかった
- 4. 切断パターンが想定していたものと異なるペプチドだった
- 5. 想定外の修飾

これらの原因を検証するためにはパラメーターを変えながらの再検索が必要となりますが、そのための 便利なアプローチが Error Tolerant Search です。Error Tolerant Search は最初、通常の条件で検索を 行います。この時同定基準を超えた query をそのまま結果として採用しつつ、同定基準を超えなかった query については以下の3点を考慮して2段階目の検索を行います。

- A. 選択した酵素の切断パターンを「半特異的」に変更します。すなわち片方が切断ルールに則った切断で もう片方が任意の切断、となります。
- B. 修飾の追加。修飾リストに含まれるすべての項目が対象で、追加で1つだけ修飾が付くケースを 網羅的に探索します。
- C. アミノ酸置換の確認。DNA の 1 塩基置換によってもたらされるアミノ酸の置換パターンを網羅的に 探索します。さらにデータベースが塩基配列であった場合は挿入や欠失も考慮します。

A は前頁で挙げた5つのマッチしない理由のうちケース **4**、B はケース **5**, C はケース **1** に対してある程度 フォローする事ができる検索方法となります。2 段階目の検索では 1 回目と 2 回目の試行で検索対象と なったペプチド数をもとに同定基準値が算定され、1 回だけ行われた検索の結果に比べ 2 段階目の検索で は同定基準値が厳しくなります。

10-4-2. Error Tolerant Search を実行する方法

まず検索パラメーターで「Error tolerant」にチェックを入れます。すると、考慮する修飾について機能別 にグループ化されたリストが表示されます。検索対象となる修飾グループを選択し、">"ボタンを使って 右側へ移動させます。考慮する修飾グループを選択し終わったら、画面下の Start Search ボタンを押して 検索を実行します。

<u>Variable</u> modifications	none selected	•	> <	Acetyl (N-1 Acetyl (Pro Acetyl (S) Alexa488	term) otein N-term) (Q)	•
Error tolerant	Automatic second pass search of the second pass second pass search of the second pass s	of se	lected modificatio	n classes		
	Multiple (20) N-linked glycosylation (210) Non-standard residue (12) O-linked glycosylation (290) Other (77) Other glycosylation (24)	•	> <	Chemical o	derivative (691)	•
Peptide tol. ±	1.2 Da 🗸 # ¹³ C 0	~	MS/MS tol. ±	0.6	Da 🗸	

10-4-3. Error Tolerant Search 検索結果

以下のページをもとに結果画面を使った説明をいたします。可能であれば実際に WEB ページで開いて ご参照ください。

https://www.matrixscience.com/cgi/master_results_2.pl?file=../data/F981130.dat;_sigthres hold=0.06427; target_fdr=1

rank2 のタンパク質ファミリー、2 の隣の三角をクリックし展開してファミリータンパク質へのペプチド マッチング状況を確認する画面を開いてください。その中の、PPB1_HUMAN へのアサインペプチドを ご確認ください(次頁図)。

⊘ 21	₫PPB1_HUMAN	Score 499	Mass N 58259	4atches 31 (31)	Sequend 16 (1	: es L6) Alkaline p	hosphatas	se, pla	acental ty	pe OS=Homo sapiens OX=9606 GN=ALPP PE=1 S
2.2	■'PPBN_HUMAN	352	57626	25 (25)	12 (L2) Alkaline p	hosphatas	ie, ge	rm cell ty	/pe OS=Homo sapiens OX=9606 GN=ALPG PE=2
2.3	PPBI_HUMAN	70	57119	8 (8)	7	(7) Intestinal	-type alka	line p	hosphata	se OS=Homo sapiens OX=9606 GN=ALPI PE=1 S
Bediepley										
Redispla	All None									
▼34 pepti	le matches (34 non-duplica	ate, 0 duplica	te)							
🗹 Auto-fi	t to window	· ·	·							
_ //0100 //				_						
Query	Dupes Observed	Mr(expt)	Mr(calc)	Delta	M Score	Expect	Rank	U	123	Peptide
⊠ 4. ⊸≹4.	517.1760	1032.3375	1032.5604	-0.2229		1.1e-05	P1			R.GSSIFGLAPGK.A
20 4 V	532.1837	1002.3528	1002.5/10	-0.2181	LU 60	0.00016		U		R.GSSIFGLAPSK.A
≝ 0. 	545.0010	1089.3491	11009.0019	-0.2327	0 45	0.014				R.GSSIFGLAPGR.A + [+57.0215 at S2]
200 - 200	507.0500	1006 2056	1006 6000	-0.2511	10 45	0.007				R. GNEVISVMNR.A + Oxidation (M)
	614.2001	1220.3850	1220.0329	-0.24/3	3U 28	0.039		U		K.LGPEIPLAMDR.F + Oxidation (M)
20100 	053.2101	1304.4057	1304.0837	-0.2780	10 87	3.6e-07	1			K. GNFQTIGLSAAAR. F
⊠ 124 ⊿110	710.2235	1418.4324	1418./154	-0.2829	90 92	3.5e-06	1	U		K.ANFQTIGLSAAAR.F + [+100.0160 at
	/26.1806	1450, 3465	1450.6477	-0.301	11 69 5 0 00	/e-Ub				R. NWYSDADVPASAR. O
213	754 6964	1494.3020	1494.0094	0.2100	0 42	0.30-00	1			D. NEWCDADWDACAD O
213 - 13	754.0804	1507.3582	1507.0091	-0.3109	9 U 43	0.30				R.NWISDADVPASAR.Q + [+57.0215 at N
2014: 	520.1538	1620 4420	1620 7762	-0.3384	10 81 0 106	5e-05				R.ALTETIMFDDAIER.A + [-48.0034 at
2113 - 115	620.7263	1654 4010	1654 0015	0.0500	0 50 100	0.38-09				K ALIEITMIDDALER.A + Oxidation (M)
2013 - 21 cr	552.5010	1630 4500	1670 0050	-0.3503	5U 54	1 1- 05				K.RVPDSGATATAILCGVK.G + [-33.98//
210. 1010	830.2372	1600 4474	1600 0000	-0.3434	10 03	1.1e-05		U		G.VIPAEEENPAFWNR.Q
E 10.	041.2310	1706 5600	1706 0004	-0.3554	10 42	3.98-00				K.ALIEIIMIDDAIEK.A + [+57.0215 at
2170	004.2000 EQC 4051	1726.3629	1756 0400	-0.3004	EU 43	0.0030				C. LIDURED DO DO DO
⊠⊥/; ⊶17,	070 0405	1756 4705	1756 0420	-0.3780	0 48 0 00	2 7- 05				G. IIPVEEENPDFWNR
2174 	6/9.2423 E02.4024	1777 4005	1777 7764	0.2470		3.78-05				G. TIPVEEENPDIWNK
21/3 	075 0100	1040 6055	1050 0045	-0.3478	50 40	7 7- 00				K. HVPDSGATATATLCGVK.G + [+31.9357
⊠200 af200	975.8100	1949.0000	1050.0245	-0.4190	1 27	7.7e-08				K DCARDDDUTESESCEDEVD O
20	656 1750	1065 5020	1064 0710	-0.4021	1 60	0.024	1			K DCARPDVIESESCEPEVE O I LI14 015
21. 21.	664 EE10	1000 6336	1001 0510	0.0327	1 00	0.0010	- <u>[</u>			K NUTTRI COCMONSTRADA T + (+14.015)
⊠21. d21.	665 1736	1002 4001	1002 0122	-0.41/4	0 54	0.0025		п		D DETIDDELMEMTERALD I + 2 (+57.02)
	1001 2027	2000 2009	2000 9059	-0.4141	10 65	3 40-05			-	P MCTPDPFVPDPVSOCCTP I + Oridation
	667, 9046	2000.3300	2000.0050	-0.4130	, 0 00 20 72	9 9 - 07			-	P MCTPDPPYDDVSOCCTP I + Oxidation
mi2⊥ mi213	670 1561	2000.3919	2000.0000	-0.4133	, 075 1175	n nnn29		0		K DGARDDVTESESGSDEVD O
	0,0,1001	2007.4400	2007.0770	0.4504		0.00025	• 1			+ Acetyl (N-term); [+15.0109 at N-te
₫223	681.8205	2042.4397	2042.8164	-0.3767	0 58	9.1e-05	▶1	U		R.MGTPDPEYPDDYSQGGTR.L + Acetyl (N-term); Oxidation (M)
₫245	766.2128	2295.6165	2296.1084	-0.4919	0 55	3.3e-05	▶1	U		R.QQSAVPLDGETHAGEDVAVFAR.G
₫252	784.5440	2350.6103	2351.1030	-0.4927	70 68	0.0022	▶1	U		R.QQSAVPLDEETHAGEDVAVFAR.G + [-17.0265 at N-term]
₫ 25:	790.2186	2367.6341	2368.1295	-0.4954	0 93	1e-08	▶1	υ		R.QQSAVPLDEETHAGEDVAVFAR.G
₫ 260	809.2208	2424.6406	2425.1510	-0.5104	0 66	0.0037	▶1	U		R.QQSAVPLDEETHAGEDVAVFAR.G + [+57.0215 at N-term]
₫274	914.9160	2741.7263	2741.2306	0.4956	50 44	0.58	▶1			R.QEGCQDIATQLISNMDIDVILGGGR.K + Oxidation (M); [+79.9568 at C4]
₫275	920.5878	2758.7415	2759.3218	-0.5804	0 126	3.7e-09	▶1			R.QEGCQDIATQLISNMDIDVILGGGR.K + [+57.0215 at M15]

結果には Expect の値も表示されています。2 段階目の検索結果は 1 段階目で同定済みの結果に比べ、 同定基準が高めになっています。

以下、Error Tolerant 検索で見つかった結果にフォーカスしていきます。上図の赤線で囲われた部分を 拡大したのが下図です。

query 133 は N 末端側がトリプシンのルールに従わないペプチドを検出しています。

L.DPSLMEMTEAALR.L + 2 Oxidation (M)
Query 260 では N 末端側に+57.0215 修飾の可能性が指摘されており、[+57.0215 at N-term]の部分 にカーソルを合わせると、その質量変動を引き起こす修飾やアミノ酸の置換が一覧で表示されます(下図)。 質量分析装置のデータでは単に質量の変動のみがわかるので、この中のどれであるかについては特定する 事はできません。状況から考えてありえないような選択肢も含まれることがありますが、MASCOT では 単に質量の変化から候補を提供しているためその内容について判別する事ができません。このような修飾 を排除したい場合、検索実行時の修飾グループの選択についてご検討ください。

R.QQSAVPLDEETHAGEDVAVFAR.G + [+57.0215 at N-term]			
R. + (Possible assignments: Carbamidomethyl (N-term) [+57.0215] Carboxymethyl (N-term) [+58.0055] Gln->Trp (Q) [+58.0207] Delta:H(6)C(3)O(1) (Protein N-term) [+58.0419]			

Error Tolerant Search は便利な検索であり、同定基準値に基づいた期待値も表示されていますが、 結果の採用については慎重な判断が必要です。このページの結果に対する議論については以下 HELP ページをご覧ください。

https://www.matrixscience.com/help/error_tolerant_help.html#RESULTS

11. 機械学習による結果の精査 (refinement)

11-1. 機械学習で行う結果の精査(refinement)の概要

Mascot Server には **Percolator**、**MS**²**Rescore** (+**DeepLC**,**MS**²**PIP**)が搭載されています。 Percolator は半教師付き機械学習アルゴリズムであり、正しいスペクトル識別と間違ったスペクトル識別の 識別を改善するために利用します。タンパク質配列データベースに対して検索を行った場合、結果は常に 正しいペプチドと間違ったペプチドが混在します。ピークは様々な条件により出たりでなかったりすること もあり、MASCOT のスコアリングだけで正解と不正解のペプチド情報を分離する事を目指すのは難しいと 言えます。下図のように、不正解と正解のケースにおけるスコア分布において、重なり合っている領域が あります。この領域をできるだけ小さくして正解と不正解の分離を容易にすることが重要です。

Percolator を適用するメリットは、Mascot スコア以外の要素をうまく活用し、正解と不正解の区別を 進め、より多くのペプチドを拾い上げる事ができるという事です。正解のデータと不正解のデータでは、 スコア以外の要素(features)が系統的に異なることがしばしばあります。

refinement 実施の際、学習のスタート地点として検索結果を正解データと不正解データに分けます。正解 のデータは通常データベース(Target データベース)の高スコアのマッチングを、不正解のデータは Decoy データベースへの検索結果を利用します。Decoy データベースに関する詳細は「**11-2-3**. **Decoy データベ** ース」の項目で説明しています。Mascot スコア以外の各要素(features)の情報を活用して、正解と不正解 のデータをより良く区分するのに最適な結果を生み出す方法を検討します(この過程について、本資料では しばしば「再スコアリング」と呼んでいます)。

refinement を実施する際、ペプチド配列情報から計算される予測保持時間情報や予測 MS2 スペクトル 情報を利用する事ができます。これらを実施するためのプログラムが DeepLC,MS²PIP で、その2つの プログラムと Percolator の間をつなぐのが MS²Rescore です。これらプログラムを利用する際、より 適切な結果を生み出すためのパラメーターがセットされている「モデル」を指定する必要があります。 モデルはそのパラメーターを算出するために使用したデータセット群を基に名前が付けられています。 モデルの選択は、検索前にパラメーターとして指定をするか、検索後に結果画面の中にある表示 コントロールの画面から各種項目を選択して下さい。

11-2. refinement 実施の必要要件とデータの流れ

11-2-1. refinement 計算が実施可能な条件

Mascot Server では Refinement を実施するために以下の条件を定めています。

- MS/MS 検索である(PMF ではない)。
- Decoy データベースへの結果結果が含まれている(ver.3.0 以降は自動的に実行されます)。
- 750 以上のクエリー
- データベースに登録されているエントリー数が 100 以上である
- Error tolerant 検索ではない

上述の条件のうち、クエリー数とデータベースエントリー数については、MASCOT サーバーの設定を 調整することにより、変更する事ができます(ただし弊社としては基本的にデフォルト設定値での利用をお 勧めしています)。以下の項目です。

PercolatorMinQueries :750

refinement 実施を許可する最小クエリー数。

PercolatorMinSequences : 100

refinement 実施を許可するデータベースエントリーの最小数。

また Percolator 計算には基本的に rank1 のペプチド配列が利用されますが、それ以外の rank のペプチド を利用するかどうかについて、以下のパラメーターにて調整が可能です。

PercolatorTargetRankScoreThreshold:

スコアがこの値より小さい場合、ランク1以下のマッチは使用されません。

PercolatorTargetRankRelativeThreshold:

スコアの差をランク 1 のスコアで割った値がこの値より大きい場合、ランク 1 以下のマッチは使用されま せん(デフォルト 0.2)

11-2-2. refinement 計算のワークフロー

Refinement 実施の計算の流れを示したの以下の図です。

検索時、Target データベースとは別に Decoy データベースに対しても検索を行います。Decoy データ ベースの詳細については、「**11-2-3. Decoy データベース**」をご覧ください。

検索結果を受け取った後、refinement 計算が本格的に実施されます。まず、各 query/ペプチド配列に ついて、Mascot score 以外の様々な要素(features)を計算します。さらに必要に応じて、予測保持時間 を計算するプログラム DeepLC や予測 MS2 スペクトルを計算するプログラム MS²PIP を利用した理論 値と、実測データとの一致度などを feature として追加します。features を使い、refinement 計算を 実施します。features については「**11-3. features**」をご覧ください。

Percolator では Target データベースのうちスコアが高いものを正解データとしてタグをつけ、Decoy デ ータベースの結果については不正解データとしてタグをつけます。features 情報の寄与の割合を調整しな がら、正解データと不正解データが一番きれいに分離されるような値を繰り返し探求します。これらの過程 を経て最適と判断されたパラメーターを利用して認定されたペプチドを同定ペプチドとします。

[関連する論文]

Kall, L., et al., Semi-supervised learning for peptide identification from shotgun proteomics datasets, Nature Methods 4 923-925 (2007)

Kall, L., et al., Posterior error probabilities and false discovery rates: Two sides of the same coin, Journal of Proteome Research 7 40-44 (2008)

Kall, L., et al., Assigning significance to peptides identified by tandem mass spectrometry using decoy databases, Journal of Proteome Research 7 29-34 (2008)

Kall, L., et al., Non-parametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry, Bioinformatics 24 I42-I48 (2008)

Brosch, M., et al., Accurate and Sensitive Peptide Identification with Mascot Percolator, Journal of Proteome Research 8 3176-3181 (2009)

Spivak, M., et al., Improvements to the Percolator Algorithm for Peptide Identification from Shotgun Proteomics Data Sets, Journal of Proteome Research 8 3737-3745 (2009)

11-2-3. decoy データベース

Decoy データベースは、Target データベース(検索対象となるデータベース、通常のデータベース)の 各エントリーの配列を ランダムまたは逆向きに変更する事で作成されます。

Decoy データベースは、「データベースの性質」がTarget データベースと同じである事が重要なポイントです。「データベースの性質」とは以下の内容の事を示します。

- データベースに登録されているエントリー数
- 登録エントリーのアミノ酸残基長分布
- データベースに含まれる各アミノ酸の出現頻度

検索データも同じ、検索パラメーターも同じ、そしてデータベースの性質も同じであることが重要です。 配列だけが通常と異なり正解配列と同一のものを含む可能性が極端に小さい Decoy データベースを利用 することで、その検索結果をTarget データベースとの対比として利用するうえで支障がなくなります。必要 な条件を備えているため、デコイマッチがターゲットデータベースの不正確なマッチをモデル化したもので あると考える事ができます。

11-2-4. FDR (q-value)

Percolator は MASCOT に PEP, q-value の値を返します。PEP は個々のペプチドにおける誤同定の確率 を表します。一方 q-value は該当ペプチドより高いスコアを見たときに、FDR の値がどうなっているかを 示す数値です。FDR という用語は q-value とほぼ同じ内容を示しますが、特に「同定基準値」として見た 場合に使用されています。 MASCOTはrefinementを実施している場合、スコア、期待値を以下のように置き換えて結果表示します。

スコア:-10log10(PEP) 期待値:PEP

同定基準は検索パラメーターの時に指定する"Target FDR"の値となり、通常は1%です。

Target,Decoy 両データベースで検索した際のスコアを良い順に並べ、Normal の結果の累積数を分母に、 Decoy の検索結果を分子にした割合(%)が q-value または FDR です(下図)。

Refir	lefinement : ペプチドのスコア、同定基準、q-value (またはFDR)						
	Normal,Decoy 検索結果(ペプチドと期待値)を、結果の良い順に混ぜて並べる						
	Sequence	Score (PEPを反映)	Normal or Decoy	N累計	D累計	q-value(FDR) [D/N] (%)	
	NAGVEGSLIVEK	52	Ν	1	0	0	
	VGEVIVTK.	51	Ν	2.	0	0	
	•			•			
	TLNDELEIIEGMK	34	Ν	118	0	0	
	MATRIK	33	D	118	1	0.847	
	ISSIQSIVPALEIANAHR	31	Ν	119	1	0.840	
	:						
	VGLQVVAVK	19	Ν	512	5	0.977	
	TAKAESK	18	D	512	6	1.171	
	LSDGVAVLK	17	Ν	513	6	1.170	
	SCAFFLDK	16	D	513	7	1.365	
	スコア [:] -10log ₁₀ (PEP) 期待値:PEP			FDR 1%を 1%より小な	を同定基準 さいペプチ	値として、q-valu ・ドは同定ペプチド	eが となる

どのような基準を適用すると良いか?論文や論文投稿の際データをアップロードするのに利用されて いる repository site などでデータ処理の項目を見ると、データがどのように処理されたかを確認する事が できます。

主要な論文やコンソーシアムでは一定の枠組みでのガイドラインがあります。

• HUPO

https://www.hupo.org/HPP-Data-Interpretation-Guidelines

MCP Guidelines

https://www.mcponline.org/guidelines

FDR の適用など同定基準についてどのようパターンがあるか調べるため、PRIDE, jPOST などの repository site の投稿データを実際に眺めてその記述内容をご確認頂く事をお勧めいたします。下図は PRIDE というサイトで FDR に関する表記の例です。peptide FDR だけでなく protein FDR も適用して いる事、FDR の設定値が 1%である事、Decoy データベースにはランダムでなく逆向き(reverse)配列を適 用している事などがわかります。

11-3. features

Percolator の計算には、Mascot Score 以外の様々な要素(features)が利用されます。ここではその features の項目について説明します。

Feature name	Description
retentionTime	保持時間
dM	ペプチド質量の誤差、[理論値]-[実測値] (Da)
mScore	Mascot スコア(always on)
lgDScore	次ランクとの Mascot スコア差
mrCalc	ペプチド質量の理論値
charge	電荷
dMppm	ペプチド質量の誤差、[理論値]-[実測値] (ppm)
absDM	ペプチド質量の誤差、[理論値]-[実測値] (Da)、絶対値
absDMppm	ペプチド質量の誤差、[理論値]-[実測値] (ppm)、絶対値
isoDM	ペプチド質量の誤差、[理論値]-[実測値] (Da)、同位体ピークの可能性を考慮
isoDMppm	ペプチド質量の誤差、[理論値]-[実測値] (ppm)、同位体ピークの可能性を考慮
isoDmz	ペプチド m/z の誤差、[理論値]-[実測値] (Da)、絶対値 (注:質量ではなく)
isoSysDM	isoDM の要素に加え全ペプチドの誤差を基に全体をオフセット調整
isoSysDMppm	isoDMppm の要素に加え全ペプチドの誤差を基に全体をオフセット調整
isoSysDmz	isoDMz の要素に加え全ペプチドの誤差を基に全体をオフセット調整
mc	ペプチド切断設定(Missed Cleavage)の適用数。No enzyme の時は 0
varmods	修飾設定の適用数を修飾設定が適用されうるアミノ酸残基の数で割った値。
varcount	修飾設定の種類数
varmodsCount	修飾の種類数
modifiable	修飾設定が適用されうるアミノ酸残基の数
modified	修飾設定が適用されうるアミノ酸残基あるいはペプチド末端の数
totInt	入力データで 100Da 毎に 20 ピーク選んだ際の、ピーク強度の総和の log。
intMatchedTot	マッチしたピーク全体のピーク強度総和の log
relIntMatchedTot	入力データで 100Da 毎に 20 ピーク選んだ際の、ピーク強度の総和を、マッチしたピーク全体のピ ーク強度総和 で割った割合
fragDeltaMed	フラグメントピークの誤差の中央値(Da)
fragDeltaIqr	フラグメントピークマッチの誤差、四分位範囲(Da)

fragDeltaMedPPM	フラグメントピークの誤差の中央値(ppm)
fragDeltaIqrPPM	フラグメントピークマッチの誤差、四分位範囲(ppm
fragDeltaPolyFit	m/z(質量対電荷比)とフラグメントイオンの誤差(delta)を2次多項式(quadratic polynomial)で フィッティングし、その結果の決定係数 R²(データポイント 100)
longest	最も連続してフラグメントピークがマッチした回数。イオンシリーズ別に表示。
fracIonsMatched	フラグメントマッチ率。イオンシリーズ別に表示、Neutral Loss など派生も加味。 fracIonsMatchedB1, fracIonsMatchedB1deriv, fracIonsMatchedB2,)
matchedIntensity	イオン強度、イオンシリーズ別に表示
qmatch	マッチング条件にて該当ペプチドとペプチド質量がマッチしたペプチド数
MIT	Mascot 同定基準値、identity threshold
МНТ	Mascot 同定基準値、homology threshold
peptideLength	ペプチドの長さ
z1	電荷が1の場合、1
z2	電荷が2または3の場合、1
z4	電荷が 4,5 または 6 の場合、1
z7	電荷が7以上の場合、1
12C	モノアイソトピックピークのみから構成されている時、1
mc0	ペプチド切断設定(Missed Cleavage)の適用数が0の時、1
mc1	ペプチド切断設定(Missed Cleavage)の適用数が0または1の時、1
mc2	ペプチド切断設定(Missed Cleavage)の適用数が2以上の時、1
RMS	マッチしたフラグメントピークの RMS (m/z)
RMSppm	マッチしたフラグメントピークの RMS (ppm)
meanAbsFragDa	マッチしたフラグメントピークの誤差の平均値、絶対値 (Da)
meanAbsFragPPM	マッチしたフラグメントピークの誤差の平均値、絶対値 (ppm)
rawscore	二項分布の考えを用いた確率スコア、主なイオンシリーズにおけるマッチング情報を利用。確率 p は p = 2*ITOL*n/100(ITOL:MS2 誤差、n:100Da の中で選ばれたピークの数)で計算される
peptide	ペプチド配列。修飾情報は数字と合わせて表現。 e.g) X.DAKAAM1AGRLM1IR.X
proteins	タンパク質の Accession (引数に加えるときは必ず最後の項目として指定すること)

11-4. 保持時間予測と MS2 スペクトル予測

前述の、MASCOT Server 側が計算する features を"**core features**"と呼んでいますが、それ以外にも featuresを利用することができます。別プログラムを使ってペプチド配列から予測保持時間と予測 MS2ス ペクトルを計算し、実データとの一致度などの要素を Percolator の features として利用することで、同定 ペプチド数を増やすことができます。ここでは、それらの予測プログラム並びに予測プログラムと Percolator との間をつなぐプログラムについて説明します。

11-4-1. MS²Rescore

MS²Rescore は、Gent 大学で開発されたプログラムです。ペプチド同定の再スコアリングを AI が支援 するモジュール式のプラットフォームです。MS²Rescore は、保持時間を予測する DeepLC と スペクトル の MS2 スペクトルを予測する MS² PIP を利用するための、共通の Python インターフェースを提供しま す。

MS²Rescore は開発者の許可を得て Mascot Server に含まれています。MS²Rescore 並びに関連する プログラム等には様々なオープンソースライセンスがあり、その詳細は Mascot Installation & Setup マニュアルに記載されています。MS²Rescore は Mascot Server Windows 版/Linux 版の両方の システムでシームレスに動作します。

計算のために GPU を設置する必要はありません。またインターネット接続をしてどこかのサーバーに 計算を実行させる必要はなく、すべてローカル環境で計算を行います。

[関連する論文]

Buur et al.: MS2Rescore 3.0 is a modular, flexible, and user-friendly platform to boost peptide identifications, as showcased with MS Amanda 3.0. J Prot Res (2024)

Declercq et al.: MS2Rescore: Data-driven rescoring dramatically boosts immunopeptide identification rates. Molecular & Cellular Proteomics (2021)

Silva et al.: Accurate peptide fragmentation predictions allow data driven approaches to replace and improve upon proteomics search engine scoring functions. Bioinformatics (2019)

11-4-2. DeepLC

DeepLC は Gent 大学で開発されたプログラムです。Deep Learning の手法を用いてペプチドの保持 時間予測を行う事ができます。DeepLC はペプチド配列と修飾情報を受け取り、元素組成を計算して保持 時間を予測します。そのため学習ステップで見られなかった可変修飾に対しても正確な予測ができるとい うのが DeepLC の大きな強みです。

DeepLC を利用するためには、実測データの保持時間情報がピークリストファイルの各 query に含まれ ている必要があります。例えば入力フォーマットが MGF の場合、各クエリーデータに「RTINSECONDS」行 がパラメーターとして含まれている必要があります。SCANTITLE の文字列の中に保持時間情報が埋め込 まれているだけでは不十分です。入力が mzML の場合においても、保持時間は SCANTITLE ではとしてで はなく、正しくタグ付けされたメタデータ(CV term)として含まれている必要があります。条件を満たすた めの最も簡単な検索方法は、ピーク抽出処理を Mascot Distiller にて実行することです。

MASCOT であらかじめ準備している DeepLC のモデルは以下の通りです。出典情報やトレーニングデー タセット数、記述内容の詳細などについては以下 URL をご覧ください。 <u>https://www.matrixscience.com/help/ms2rescore_help.html#DEEPLCMODELS</u>

モデル名	一般名称	カラム	勾配	ペプチドの特性
full_hc_PXD005573_mcp (recommended)	DIA HF	RP	2h	Tryptic, Carbamidomethyl (C) fixed, Oxidation (M), Acetyl (Protein N-term)
full_hc_ATLANTIS_SILICA _fixed_mods	ATLANTI S SILICA	HILIC	90min	Tryptic, Carbamidomethyl (C) fixed
full_hc_LUNA_HILIC_fixed _mods	LUNA HILIC	HILIC	90min	Tryptic, Carbamidomethyl (C) fixed
full_hc_LUNA_SILICA_fixe d_mods	LUNA SILICA	HILIC	90min	Tryptic, Carbamidomethyl (C) fixed
full_hc_PXD008783_media n_calibrate				Semi-tryptic, metabolic (14N/15N), open modification
full_hc_SCX_fixed_mods	SCX	SCX	90min	Tryptic, Carbamidomethyl (C) fixed
full_hc_Xbridge_fixed_mo ds	Xbridge	HILIC	90min	Tryptic, Carbamidomethyl (C) fixed
full_hc_arabidopsis_psms_ aligned	Arabidop sis	RP	2h	Tryptic, Carbamidomethyl (C) fixed, Oxidation (M), Acetyl (Protein N-term)
full_hc_dia_fixed_mods	SWATH library	RP	135min	Tryptic, Carbamidomethyl (C) fixed, Oxidation (M)
full_hc_hela_hf_psms_alig ned	HeLa hf	RP	1h	Tryptic, TMT, phosphopeptide enriched

モデル名	一般名称	カラム	勾配	ペプチドの特性
full_hc_hela_lumos_1h_ps ms_aligned	HeLa Lumos 1h	RP	1h	Tryptic, SILAC, Carbamidomethyl (C) fixed, Oxidation (M)
full_hc_hela_lumos_2h_ps ms_aligned	HeLa Lumos 2h	RP	2h	Tryptic, SILAC, Carbamidomethyl (C) fixed, Oxidation (M)
full_hc_mod_fixed_mods	HeLa DeepRT	RP	4h	Tryptic, Carbamidomethyl (C) fixed, Oxidation (M), Acetyl (Protein N-term), Phospho (STY)
full_hc_pancreas_psms_ali gned	Pancreas	RP	110min	Tryptic, Carbamidomethyl (C) fixed, Oxidation (M)
full_hc_plasma_lumos_1h _psms_aligned	Plasma lumos 1h	RP	1h	Tryptic, Carbamidomethyl (C) fixed, Oxidation (M)
full_hc_plasma_lumos_2h _psms_aligned	Plasma lumos 2h	RP	2h	Tryptic, Carbamidomethyl (C) fixed, Oxidation (M)
full_hc_prosit_ptm_2020	ProteomeT ools PTM	RP	50min	Tryptic, 21 PTMs
full_hc_unmod_fixed_mod s	Yeast DeepRT	RP	4h	Tryptic, Carbamidomethyl (C) fixed, Oxidation (M), Acetyl (Protein N-term)
full_hc_yeast_120min_ps ms_aligned	Yeast 2h	RP	2h	Tryptic, Carbamidomethyl (C) fixed, Oxidation (M), Acetyl (Protein N-term)
full_hc_yeast_60min_psms _aligned	Yeast 1h	RP	1h	Tryptic, Carbamidomethyl (C) fixed, Oxidation (M), Acetyl (Protein N-term)

■ 使用における制限

- ・ DeepLC が対応可能なペプチド配列の最大の長さは 60 残基です。
- ・ 溶出時間が大幅に短いデータへの適用は困難です。DeepLC はある程度キャリブレーションで対応 させることができます。しかし溶出の全体の時間が短かったり、溶出時間が非常に短いグラジエントの 保持時間を予測しようとした場合、キャリブレーションがうまくいかないことがあります。例えば1時間 モデルを使用した場合 30~90 分のグラジエントではうまくいきますが、2 分や5 分のデータに対して は予測が失敗することがあります。
- ペプチドがトレーニングセットと大きく異なる場合、DeepLCの予測精度は低下します。例えばセレンを含むペプチドは、どのモデルもセレンを含まないため DeepLC で良い予測を行うことはできません。亜鉛が修飾として付与している場合などもトレーニングセットには含まれていないため、うまくいかないでしょう。

- DeepLC の現在のバージョンは、13C と 15N 以外の同位体をサポートしていません。例えば、2 つのペ プチドが重水素1つだけ異なる場合、実際のRT が異なっているとしても、DeepLC は同じリテンション タイムを予測します。
- ・ 現在のところ、クロスリンク検索、スペクトルライブラリ検索(データベースタイプが SL の検索)、Error Tolerant 検索には適用させることができません。

[関連する論文]

Bouwmeester et al.: DeepLC can predict retention times for peptides that carry as-yet unseen modifications. Nature Methods 18, 1363–1369 (2021).

11-4-3. MS²PIP

MS²PIP は、Gent 大学で開発されたプログラムです。複数のフラグメンテーションメソッド、装置、 ラベリング技術に対応した高速で正確なペプチドフラグメンテーションスペクトル予測を行うことが できます。MS²PIP は、ペプチド配列、可変修飾、電荷状態を入力とし、ピーク強度を含む MS/MS フラグメンテーションスペクトルを予測 します。MS²PIP はトリプシンペプチドと非トリプシンペプチドの どちらにも対応しています。様々な修飾付与のスペクトル予測にも対応しています。

現在のところ、クロスリンク検索、スペクトルライブラリ検索(データベースタイプが SL の検索)、Error Tolerant 検索には適用させることができません。

MASCOT に最初から搭載されているモデルは以下の通りです。モデルのバージョン、出典情報、 トレーニングデータセット数などを確認したい場合は以下 URL をご参照ください。 https://www.matrixscience.com/help/ms2rescore_help.html#MS2PIPMODELS

モデル	フラグメンテーション	MS2 検出器	ペプチド特性
CID	CID	Linear ion trap	Tryptic
CID-TMT	CID	Linear ion trap	Tryptic, TMT-labeled
CIDch2	CID	Linear ion trap	Tryptic, 1+ and 2+ fragments
HCD2019	HCD	Orbitrap	Tryptic
HCD2021	HCD	Orbitrap	Tryptic and chymotryptic
HCDch2	HCD	Orbitrap	Tryptic, 1+ and 2+ fragments
Immuno-HCD	HCD	Orbitrap	Immunopeptides
тмт	HCD	Orbitrap	Tryptic, TMT-labeled

モデル	フラグメンテーション	MS2 検出器	ペプチド特性
TTOF5600	CID	Quadrupole time-of-flight	Tryptic
iTRAQ	HCD	Orbitrap	Tryptic digest, iTRAQ-labeled
iTRAQphospho	HCD	Orbitrap	Tryptic, iTRAQ-labeled, enriched for phosphorylation
timsTOF2023	CID	Ion mobility quadrupole time-of-flight	Tryptic and elastase, immuno class 1
timsTOF2024	CID	Ion mobility quadrupole time-of-flight	Tryptic and elastase, immuno class 1 & 2

[関連する論文]

Declercq et al.: Updated MS2PIP web server supports cutting-edge proteomics applications. Nucleic Acids Research (2023)

Gabriels et al.: Updated MS2PIP web server delivers fast and accurate MS2 peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques. Nucleic Acids Research (2019)

Degroeve et al.: MS2PIP prediction server: compute and visualize MS2 peak intensity predictions for CID and HCD fragmentation. Nucleic Acids Research, 43(W1), W326–W330. (2015)

Degroeve, S., & Martens, L.: MS2PIP: a tool for MS/MS peak intensity prediction. Bioinformatics 29(24), 3199–203. (2013)

11-5. refinement に関するレポート

機械学習を適用した際、以下の疑問に答えるレポートを出力することができます。

- 機械学習の適用により、どれくらい結果が改善したか
- データに対して正しいモデルを選択する事ができたか?
- 保持時間予測(DeepLC)またはスペクトル予測(MS²PIP)は正確であったか?
- feature のうち貢献度が高かったものはどれか?

これらレポートの見方については、「7-2-10. machine learning quality report」にまとめていますので そちらをご覧ください。

12. MASCOT Server 管理 – データベースと検索ログ

この章では MASCOT Server の管理に利用するプログラムについてご紹介します。 12-1 では MASCOT Server で使用しているデータベースや各種ログを確認する事ができる Database Status について、12-2 では検索のログである Search log についてご紹介しています。

12-1. 現在利用可能なデータベースに関する情報 : Database Status

Database status では各種動作のログに関する情報へのリンクや、MASCOT Server上で現在使用可能 なデータベースに関する情報について表示されます(下図)。

	🗽 Mascot search status page			_		×
\leftarrow	→ C	τœ	£≡	Ē		
	MASCOT search status page					•
	Version: 3.1.0 - MSKK (CLW7-X3C6-FBUB-VZXN-TNJZ) Licence In 24 logical, 1 physical Intel processors (hyper-threading enabled, 1 18 19 20 21 22 23 available, using: 0 1 2 3 4 5 6 7 8 9 10 11 12 Active databases: 21. Inactive databases: 8. Max databases: 256.	0 2 core !3 14). CPU 15 16	s: 0 1 17 18	2 3 4 19 20	56 21
3	Search log monitor log error log Error message descriptions Do n	ot auto	o refre	sh this	<u>page</u>	
4	Name = <u>PRIDE_Contaminants</u> Family = C:/inetpub/mascot/sequence/PRIDE_Con Filename = PRIDE_Contaminants_20160906.msp Pathname = C:/inetpub/mascot/sequenc Status = In use <u>Statistics Compression warnings Recomp</u> State Time = Fri Aug 13 02:30:49	aminant APRIDE Tess fil	s/currer Contamir <u>e</u>	it/PRIDE, ants/cu	_Contami rrent/PF	nants ≀IDE_C
	Name = <u>SwissProt</u> Family = C:/inetpub/mascot/sequence/SwissProt Filename = SwissProt_2021_02.fasta Pathname = C:/inetpub/mascot/sequence/SwissP Status = In use <u>Statistics Unidentified taxonomy Recom</u> State Time = Fri Aug 13 02:30:49	′current ot/curr press fi	/SwissPr ent/Swis <u>le</u>	ot_*.fa sProt_2	sta 021_02.f	asta
	Name = <u>UP5640 H sapiens</u> Family = C:/inetpub/mascot/sequence/UP5640_H_ Filename = UP5640_H_sapiens_20201007.fasta Pathname = C:/inetpub/mascot/sequenc Status = In use <u>Statistics Recompress file</u> State Time = Fri Aug 13 02:30:49	apiens/ e/UP5640	′current/ I_H_sapie	'UP5640_ ns/curr	H_sapier ent/UP56	,s_≭.f 340_H_
	4					•

①:使用している MASCOT のバージョンと MASCOT のライセンス

② : MASCOT Server が搭載されているコンピューターの CPU の中で、MASCOT Server がどのコアを 動かしているか、並びに現在稼働中の検索件数

3: 各種ログへの移動

Search log : 検索ログ (Home にある「Search log」と同じ)

monitor log	: MASCOT Serv	erの動作ログ。\$MASCOT¥logs¥monitor.log の内容
error log	: MASCOT Serv	er のエラーログ。\$MASCOT¥logs¥errorlog.txt の内容
Error message	descriptions	: MASCOT のエラー番号に関する情報
Do not auto re	fresh this page	: database status 画面を自動・定期的に更新するかしないかの
		切り替え

④: 各データベースの状況。例として以下に SwissProt の情報を表示した部分の拡大図を示します。

 Name
 = SwissProt
 Family
 = C:/inetpub/mascot/sequence/SwissProt/current/SwissProt_*.fasta

 Filename
 = SwissProt_2021_02.fasta
 Pathname = C:/inetpub/mascot/sequence/SwissProt/current/SwissProt_2021_02.fasta

 Status
 = In use
 Statistics
 Unidentified taxonomy

 State Time
 = Fri Aug 13 02:30:49 # searches = 0

 Mem mapped
 = YES
 Request to mem map = YES

 Number of threads
 = -1
 Current = YES

各項目が示す内容は以下の通りです。

Name	: MASCOT Server で登録されているデータベースの名称						
Family	: データベース側で登録されている、ファイルの path 並びにファイル名称ルールの情報						
Filename	: 現在認識されている fasta ファイルの名称						
Pathname	: 現在認識されている fasta とファイルが置かれている path						
Status	:データベースの現在の状況を表しています。データベースは fasta ファイルが更新						
	された場合、その fasta ファイルから MASCOT で使用する複数のファイルが作成され、						
	すべてのファイルが作成された後に最初の検索テストが実施されます。また設定内容に						
	よってはデータベースファイルがメモリ上にマッピングされ、最後に使用可能となります。						
	データベース構築から使用可能になるまでの一連の状況を知らせるため、Status 項目						
	で以下のように表示されます。						
	Creating compressed files						
	Running 1st test First test just run OK Trying to memory map files						
	Just enabled memory mapping In Use						
	またどこかの段階でエラーになった場合などは「Halted:」などのように問題を含む						
	状況であることを表すメッセージを表示します。						
State Time	: 現任示されている Status を認識した日時						
Mem mapped	: データベースがメモリ上にマップされた状態であるか						
Request to me	m map : MASCOT Server の設定でデータベースをメモリにマッピングする事を 試みる設定であるか						
Request unmag	・ MASCOT のプログラムがメモリ上へのマッピングを解除する命令を下した 状態であるか						

Mem locked	: データベースのメモリ上へのマッピングを固定(lock)する状態になっている
	かどうか
Number of thresholds	: 検索に使用可能なコア数の設定。通常は、最適設定を自動適用する設定で
	ある事を表す「-1」と表示
Current	: 現在データベース関連のファイルが正しく認識されているか
Туре	: データベースの種類が Amino Acid か Nucleic Acid か、あるいは
	Spectral Library か

表示のいくつかの箇所はハイパーリンクになっていて、クリックする事でさらに詳しい情報を確認する 事ができます。以下、各ハイパーリンク先の画面について説明します。

・データベースの名称(Name の項目): 該当データベースで行われている検索の進捗状況、または過去に 行った検索の内容。実行中の検索がある場合、"Current jobs"にその内容が表示されます。"Job"の検索 番号がハイパーリンクになっており、クリックするとさらに詳細の情報を確認できます(次頁)。

Mascot database status - SwissProt									
Currer 1243	n <mark>t jobs</mark> <u>FID Start time</u> 14420 Wed Sep 1 16:34:14	<u>Dur. Status</u> 14 Searching	<u>User</u>	<u>UserID Title</u> 0 Copy of mgf 02 (C:¥ProgramData¥Matrix Science¥Ma					
Comple Job	<mark>eted jobs</mark> <u>PID</u> Start time	<u>Dur. Status</u>	<u>User</u>	<u>UserID</u> <u>Title</u>					

検索が完了すると、"Completed jobs"に移行します。

Mascot database status - SwissProt										
<mark>Current jobs Job</mark> <u>PID</u> <u>Start time</u>	<u>Dur.</u>	<u>Status</u>	<u>User</u>	<u>UserID Title</u>						
Completed jobs Job FID Start time 1243 14420 Wed Sep 1 16:34:14	<u>Dur.</u> 810	<u>Status</u> User read res	<u>User</u>	<u>UserID Title</u> 0 Copy of mgf 02 (C:¥ProgramData¥Matr						

•[job 番号]:

"Percent complete" で検索の進捗 状況を確認する事ができます。

Mascot Job status - Job 1243 SwissProt 1243 14420 Database Job Number Process ID Task ID User Name 163048165201 0 User ID User email of mgf 02 (C:¥ProgramData¥Matri× Science¥Mascot Daemo Percent complete : 6% <u>ta/20210901/F001243.dat</u> Sep 1 16:34:14 2021 Start time End time Wed Sep Searching... time : Upload time : Û e: U : Searching.... : current value O. Change this by <u>-5</u> <u>-1</u> +1 +5 : 192.168.1.19 : MIS : Yes . o^w Query prep time : 0 Whole process time: 0 Job status Priority IP address Type of srch Enzyme? CPU utilisation Yes 0% : 07 : No requests. <u>Kill</u> / <u>Pause</u> / <u>Resume</u> Job requests?

Database Status のハイパーリンクに話を戻します。

•Unidentified taxonomy :

データベースのエントリーの中で taxonomy 情報との紐づけできなかったものをピックアップして表示します。データベースファイル自身の不具合で生じるケースもあります。

•Statistics :

データベースの登録情報に関する各種数値。画面上部(**左下図**)ではデータベースの登録件数や残基数、 生物種エントリー毎の登録件数などが表示されます。画面下部には各アミノ酸残基数やエントリーの残基長 分布が表示されます(**右下図**)。

Time files compressed	:	Thu Aug 12 12:49:30 2021	Residue A B C D	Frequency 16807181 276 2817673 11117166 12001007
Time / data of fasta file	:	Mon May 24 19:20:09 2021	F	7870527
Time of fasta files (int)	:	1621851609	G	14406614
Number of residues	÷	203519613	н I	12043802
Number of sequences		564638	Ĵ	0
Number with invalid residue	s:	0	K	19648473
Number of sequences too lon.	g:	0	M	4914035
Length of longest sequence	:	35213	N	8264502 29
Maximum Accession Length	:	11	P	9644044
Version of Mascot	:	2.8.0.1	Q	8003286
Version of this file	:	5	S	13512057
lype of tasta tile	:		Ť	10903032
Parse rule for accession	:	L]* ¥(L]*¥)	V	329 13968080
Seqs with invalid taxon tre	e:		Ŵ	2240442
Num sequences for taxonomy		All entries=304038	Ş.	8280 5944003
Num sequences for taxonomy	:	Archaea (Archaeopacteria)-19050	ż	249
Num sequences for taxonomy	:	Alveolata (alveolates)=1141		
Num sequences for taxonomy	:	Placmodium falcinarum (malaria nar	Length	Count
Num sequences for taxonomy	:	Athen Alveolata=793	2	2
Num sequences for taxonomy	÷	Metazoa (Animals)=107932	å 4	22
Num sequences for taxonomy	:	Caenorhabditis elegans=4226	5	41
Num sequences for taxonomy	•	Drosophila (fruit flies)=5949	5	30 116

•Recompress file :

現在構築済みのデータベースについて、再度データベースの構築を開始します。Taxonomy の設定など を変更しそれを反映させる時などに利用します。

•retry :

Status が Halted になった際表示される retry をクリックすると、データベースの再構築または 1st テスト検索の再実施を行います。エラーが生じた際、エラーへの対処を行ったのち再度データベース 構築や検索を試みる際などに利用します。

Database Status で同じデータベースが2つ表示されることがあります。データベース入れ替え中、 または入れ替え済みであることを示しています。

入れ替え途中の過程では、現在使用可能な(status = in use)データベースと、構築中である新たな データベースの進捗状況が2つとも表示されます(下図)。

また入れ替え済みとなった後、現在使用可能な「status = in use」の データベースと、かつて使用して いて現在「status = not in use」となったデータベースについても引き続き表示されます(下図)。

Name = <u>SwissProt</u> Family = C:/inetpub/mascot/sequence/SwissProt/current/SwissProt_*.fasta Filepame = <u>SwissProt_2021_02.fasta</u> Pathname = C:/inetpub/mascot/sequence/SwissProt/current/SwissProt_2021_02.fasta
Status = Not in use Statistics
State The Find Sep 2 10.20.34 # searches - U
Mem mapped - NU kequest to mem map - 155 kequest unmap - NU Mem locked - NU Nuclear of the sector of the constant a NO. Turke a local sector
Number of threads 1 Current - NU lype - Amino acid
Name = <u>SwissProt</u> Family = C:/inetpub/mascot/sequence/SwissProt/current/SwissProt_*.fasta Eilaname = <u>SwissProt</u> _2021_03.fasta Pathname = C:/inetpub/mascot/sequence/SwissProt/current/SwissProt_2021_03.fasta Status = In use <u>Statistics Unidentified taxonomy Recompress file</u> State lime = Thu Sep 2 10:28:34 # searches = 0 Mem mapped = YES Request to mem map_= YES Request unmap = NO Mem locked = NO
Number of threads Uurrent - TES lype - Amino acid

もし2つ表示されている状況が気になるようであれば、MASCOT Service またはコンピューター自身を 再起動する事で、最新の1つのみが表示されるようになります。

12-2. 検索ログ:Search log

MASCOT Server で行った検索はすべて 検索結果を格納したファイルが保存され、 検索のログも残ります。

Home → 「Search log」をクリック するか、Database Status で「Search log」のハイパーリンクをクリックする事で、 Server で行った検索のログを開く事が できます。

下図のような Search log 画面が表示されます。

MASC	MASCOT search log													
Version:	Version: 2.8.0 - mskk (YRNB-5YZ8-GFBC-T9W9-CYNQ)													
Sort / filter	sort/filter Log File: [./ogs/searches.log Start at: (-1=end, 1=start) [-1 how many: [50 273 in log, 273 after filters. Data dir: GETs?: C													
Job#	PID	dbase	User Name	Email	ті	In	start time	Durati	Status	Prio	Type	Enzyme I	P User ID	Peak list data file
•	0	0	○ ☑	0	0	0	○ ☑	0	3	0	0			○ ☑
1511	5436	UP2195_D	Monitor Test DB 0		MS	-	Fri Aug 6 11:57:49 2021	1	No email setu	0	MIS	Yes	0	test_search.mgf
1510	12840	UP5640_H			be	-	Wed Aug 4 00:00:25 2021	410	User read res	0	MIS	Yes	0	C:¥temp¥mascotsearchtest2021 803
1509	14116	UP5640_H			be	-	Tue Aug 3 23:49:12 2021	415	User read res	0	MIS	Yes	0	C:¥temp¥mascotsearchtest2021 803
1508	2452	UP5640 H			be		Tue Aug 3 23:38:02 2021	414	User read res	0	MIS	Yes	0	C:¥temp¥mascotsearchtest2021
1507	6932	SwissPro	Monitor Test DB 0		MS	-	Tue Aug 3 17:05:40 2021	3	No email setu	0	MIS	Yes	0	test_search.mgf
1506	9944	SwissPro	takaesu		Ly		Wed Jul 14 10:35:59 2021	23	User read res	0	MIS	Yes 1	9 0	Lysozyme_2p2mJ_1minute.temp.mg
1505	716	SwissPro			iT	-	Thu Jul 8 02:01:25 2021	17	User read res	0	MIS	Yes	0	C:¥temp¥iTRAQ8plex6data¥fromlosg
1504	18348	SwissPro			iT	-	Thu Jul 8 01:57:29 2021	17	User read res	0	MIS	Yes	0	C:¥temp¥iTRAQ8plex6data¥fromlosg
1502	12069	CusicoDro			IT		Thu Jul 9 01-52-27 2021	10	Licor road roc	0	MIC	Vac	0	C.VtomoViTDAOQolov6 dataVfromlaga

以下、①~③各パートに記載されている情報や利用可能な機能について、詳しく説明します。

1

Version: 2.8.0 - mskk (YRNB-5YZ8-GFBC-T9W9-CYNQ) Sort/filter Log File: ...logs/searches.log Start at: (-1=end, 1=start) -1 how many: 50 273 in log, 273 after filters. Data dir: GETs?: D

バージョンとライセンスの情報が先頭行に記載されています。

Sort/filter	: この行で指定した情報に基づいて検索ログが表示されます。条件を変更して新たに
	表示させる場合、このボタンを押します。
Log File	: MASCOT の検索ログのファイルの path
Start at	: 検索ログを、検索番号の降順(-1)で表示するか昇順(1)で表示するか
how many	:表示するログ件数
Data dir	: デフォルト設定以外の data フォルダへのパスを使用するときに指定
Gets?	: getseq 情報を表示するか

2

Job#	PID	dbase	User Name	Email	Ti	In
۲	0	0	0	0	0	\bigcirc
	<	~				<
<u>1511</u>	5436	UP2195_	D Monitor Test DB 0		MS	<u></u>
<u>1510</u>	12840	UP5640_	Н		be	<u></u>
<u>1509</u>	14116	UP5640_	Н		be	<u></u>

Job# : 検索番号。デフォルトでは 1234 番から実行順に割り振られています

: MASCOT Server で使用しているプロセス ID

dbase : 使用したデータベース

User Name : 検索ユーザー(検索時に指定)

Email : メールアドレス。ただし local 版ではメールアドレスでなく短いテキスト情報でもよい

Title(Ti とデフォルト表示): 検索のタイトル (検索時に指定)

Intermediate File (In とデフォルト表示): 結果ファイルの置かれている場所

3

PID

start time	Durati	Status	Prio	Туре	Enzyme	IP	User ID	Peak list data file
0	0	0	\bigcirc	0	0	\bigcirc	0	0
	<		<	<	<		✓	
Fri Aug 6 11:57:49 2021	1	No email setu	0	MIS	Yes		0	test_search.mgf
Wed Aug 4 00:00:25 2021	410	User read res	0	MIS	Yes		0	C:¥temp¥mascotsearchtest20
Tue Aug 3 23:49:12 2021	415	User read res	0	MIS	Yes		0	C:¥temp¥mascotsearchtest20
Tue Aug 3 23:38:02 2021	414	User read res	0	MIS	Yes		0	C:¥temp¥mascotsearchtest20

start time	: 検索開始時間
Duration	:検索時間
Status	:検索結果の状態
Priority	: 検索時に指定した、検索の優先順位
Туре	: PMF / SQ / MIS
Enzyme	: 特異性を持つ設定で行ったか(Yes)、特異性を持たない設定 None で実行したか (No)
IP address	: 検索をかけたコンピューターの IP アドレス
User ID	: MASCOT のセキュリティ設定で指定しているユーザーID
Peak list data	file:入力データファイルのパス並びに名称

各項目の一番上にある入力欄はフィルターとして利用できます。例えば SwissProt で検索した結果のみを表示させたい場合、"dbase"項目に"SwissProt"と入力して"sort/filter"ボタンを押すことでフィルターリングが実現します。

またその上にあるチェックボックスは項目の表示を広げてすべて読めるようにするかどうか、さらに その上にあるラジオボタン(1項目のみ選択可能)は選択項目で並び替えを行う事を意味します。並び替え については通常"Job#"が選択されていて、検索を行った順番で並べられています。

13. MASCOT Server のカスタマイズ

13-1. カスタマイズは Configuration Editor で

MASCOT Server の<mark>各種設定変更を行うのが「Configuration Editor</mark>」です。Home 画面にある 「Configuration Editor」をクリックすると、設定内容一覧が現れます。 各設定画面について、以降より詳しく説明いたします

13-2. Amino Acids

アミノ酸の質量に関する設定を行う画面です。Home -> Configuration Editor -> Amino Acids で 開く事ができます。

最初に定義一覧が現れます(下図)。基本的には定義されている内容をそのままご利用頂く事になります。

Mascot Configuration: Amino Acids								
Amino	Acids							
1	3	Fullname	Monoisotopic (Da)	Average (Da)	Composition			
Α	Ala	Alanine	71.037114	71.0779	H(5) C(3) N O			
R	Arg	Arginine	156.101111	156.1857	H(12) C(6) N(4) O			
N	Asn	Asparagine	114.042927	114.1026	H(6) C(4) N(2) O(2)			
D	Asp	Aspartic acid	115.026943	115.0874	H(5) C(4) N O(3)			
С	Cys	Cysteine	103.009185	103.1429	H(5) C(3) N O S			
E	Glu	Glutamic acid	129.042593	129.1140	H(7) C(5) N O(3)			
Q	Gln	Glutamine	128.058578	128.1292	H(8) C(5) N(2) O(2)			
G	Gly	Glycine	57.021464	57.0513	H(3) C(2) N O			
н	His	Histidine	137.058912	137.1393	H(7) C(6) N(3) O			
I	Ile	Isoleucine	113.084064	113.1576	H(11) C(6) N O			
L	Leu	Leucine	113.084064	113.1576	H(11) C(6) N O			
к	Lys	Lysine	128.094963	128.1723	H(12) C(6) N(2) O			
м	Met	Methionine	131.040485	131.1961	H(9) C(5) N O S			
F	Phe	Phenylalanine	147.068414	147.1739	H(9) C(9) N O			
Р	Pro	Proline	97.052764	97.1152	H(7) C(5) N O			
s	Ser	Serine	87.032028	87.0773	H(5) C(3) N O(2)			
т	Thr	Threonine	101.047679	101.1039	H(7) C(4) N O(2)			
w	Trp	Tryptophan	186.079313	186.2099	H(10) C(11) N(2) O			
Y	Tyr	Tyrosine	163.063329	163.1733	H(9) C(9) N O(2)			
v	Val	Valine	99.068414	99.1311	H(9) C(5) N O			
N-term	N-term	N-term	1.007825	1.0079	н			
C-term	C-term	C-term	17.002740	17.0073	но			
U	Sec	Selenocysteine	150.953633	150.0379	H(5) C(3) N O Se Edit			
J	Xle	Leu or Ile	113.084064	113.1576	H(11) C(6) N O Edit			
0	Pyr	Pyrrolysine	237.147727	237.2982	H(19) C(12) N(3) O(2) Edit			
в	Bbb	Asn or Asp	114.534940	114.5950	ambiguity code			
х	Xxx	Any residue	111.000000	111.0000	ambiguity code			
Z	Zzz	Glu or Gln	128.550590	128.6216	ambiguity code			
Main menu								

U,J,O の 3 文字についてはユーザーがカスタマイズする事ができます。カスタマイズを希望する場合、 カスタマイズを希望する文字の行にある「**Edit**」ボタンをクリックします。

В	Bbb	Asn or Asp	114.534940	114.5950	ambiguity code
х	Xxx	Any residue	111.000000	111.0000	ambiguity code
Z	Zzz	Glu or Gln	128.550590	128.6216	ambiguity code
Letter	U	Short name Sec Ful	I name Selenocysteine		
Composition		H(5) C(3) N O Se			
		13C 🗸 1 🖌 Add			
Monois	otopic	150.953633			
Average	e	150.0379			
Save	changes	Cancel			

このカスタマイズは、20 種類のアミノ酸以外のアミノ酸をターゲットとしたい時や、あるアミノ酸の特定 修飾について配列に組み込んでおきたい場合などに、配列データベースのカスタマイズと一緒に使用する などといった使い方があります。

13-3. Modifications

修飾、アミノ酸の質量の変化に関する設定を行う画面です。Home -> Configuration Editor -> **Modifications** で開く事ができます。

最初に、設定済みの定義一覧が現れます(下図)。既にある設定をそのまま微調整する場合は項目名の リンクを、現存設定を残しコピーしてそちらで書き換える場合は「Copy」のリンクをクリックします。新規の 設定を作成するには画面下部の「Add new modification」ボタンを押します。

Mascot Configuration: Modifications								
Displaying 1499/1499	Modifications							
	□ Title ♦	Monoisotopic Avera	ge Composition Source	Visibility Err	Fol			
	15N-oxobutanoic	-18.023584 -18.02	239 H(-3) 15N(-1) Unimod	l long ye	s Copy Print			
	2-dimethylsuccinyl	144.042259 144.12	253 H(8) C(6) O(4) Unimod	long ye	s Copy Print			
	2-monomethylsuccinyl	130.026609 130.09	H(6) C(5) O(4) Unimod	long ye	s Copy Print			
	2-nitrobenzyl	135.032028 135.12	201 H(5) C(7) N O(2) Unimod	long ye	s Copy Print			
	2-succinyl	116.010959 116.07	722 H(4) C(4) O(4) Unimod	long ye	s Copy Print			
Error tolerant:	2HPG	282.052824 282.24	H(10) C(16) O(5) Unimod	long ye	s Copy Print			
🗆 Yes	3-deoxyglucosone	144.042259 144.12	H(8) C(6) O(4) Unimod	long ye	s Copy Print			
🗆 No	3-hydroxybenzyl-phosphate	186.008196 186.10	H(7) C(7) O(4) P Unimod	long ye	s Copy Print			
Mixed	3-phosphoglyceryl	167.982375 168.04	420 H(5) C(3) O(6) P Unimod	long ye	s Copy Print			
	3sulfo	183.983029 184.16	693 H(4) C(7) O(4) S Unimod	long ye	s Copy Print			
Classifications: clear	□ 4-ONE	154.099380 154.20	063 H(14) C(9) O(2) Unimod	long ye	s Copy Print			
-	4-ONE+Delta:H(-2)O(-1)	136.088815 136.19	H(12) C(9) O Unimod	long ye	s Copy Print			
Post-translational	4AcAllylGal	372.142033 372.36	571 H(24) C(17) O(9) Unimod	long ye	s Copy Print			
Pre-translational	a-type-ion	-46.005479 -46.02	254 H(-2) C(-1) O(-2) Unimod	long ye	s Copy Print			
Chemical derivative	AccQTag	170.048013 170.16	574 H(6) C(10) N(2) O Unimod	long ye	s Copy Print			
Arteract	Acetyl	42.010565 42.03	67 H(2) C(2) O Unimod	mixed ye	s Copy Print			
Source	Acetyl:13C(2)	44.017274 44.02	20 H(2) 13C(2) O Unimod	long ye	s Copy Print			
	Acetyl:2H(3)	45.029395 45.05	52 H(-1) 2H(3) C(2) O Unimod	long ye	s Copy Print			
Edited Unimod	Acetyldeoxyhypusine	97.089149 97.15	582 H(11) C(6) N Unimod	long ye	s Copy Print			
	Acetylhypusine	113.084064 113.15	576 H(11) C(6) N O Unimod	long ye	s Copy Print			
	Page 1/75 Go to page 15 to Ac		✓>>	Pag	je size 20 🗸			
Apply to selected: 0								
Include in short list	Add new modification Main	menu			Check Unimod			
Include in long list								
Include in error tolerant								
Exclude from error tolerant								
Delete								

■ 最初の一覧表で表示されている項目(列)は以下の通りです。

Title	: 修飾の名称。詳しくは <u>https://www.unimod.org/names.html</u>
Monoisotopic	: Monoisotopic 質量
Average	: Average 質量
Composition	: 化学式、修飾が付く残基における質量の増減
Source	: unimod 由来の項目か、unimod 内容を一部変更したか、自身で作成した項目か
Visibility	: modification リストのデフォルト表示(short)か、"show all mod"オプションを使用
	した時に初めて表示される項目(long)か、修飾が付くアミノ酸残基によってそれらの
	設定が異なり混ざっている状態 (mixed)か
Err Tol	: Error Tolerant 検索 (10-4)の時に考慮される修飾かどうか

表示されている項目のうち青い太字で表されている Title, Monoisotopic, Average については、項目 名をクリックする事で降順/昇順に並べ替える事ができます。目的とする項目を探す際に、Title(名称)の アルファベット順にするか、Monoisotopic 質量の順に並べて計算値から探すことで見つけやすいです。

■ 前頁図一覧下に表示されているボタンは以下の通りです。

```
Page N/M Go to page , page size N
```

	: 表示しているページの変更や1ページで表示される項目数の変更
Add new modification	:新しい修飾を作成
Main menu	: Configuration Editor の一覧表示に戻ります
Check Unimod	: 修飾設定は Unimod というサイトでまとめられています。「check Unimod」
	ボタンは Unimod にある修飾設定ファイルの内容を確認し、手元のファイル
	より新しかった場合にそれを取得して設定をアップデートします。なお
	Unimod ファイルをアップデートしても自身で作成した修飾はなくなりません。

■ 前頁図左フレームは、表示内容をフィルターリングしたり、項目を複数選んで設定をまとめて変更する 際に利用する欄です。

以下は表示内容をフィルターリングする項目です。

Visibility	: modification リストのデフォルト表示(short)か、"show all mod"オプションを使用
	した時に初めて表示される項目(long)か、修飾が付く残基によってそれらの設定が
	異なり混ざっている(mixed)か、あるいはリストには記入されておらず修飾以外の特定
	の設定内のみ有効な内容か(Not listed)。
Error tolerant	: Error tolerant 検索で考慮される修飾かどうか 。「 Yes」 :使用される設定、「 No 」:
	使用されない設定、「Mixed」:残基により使用される/されない 設定が混ざっている
Classifications	: 修飾の分類。検索などで使用するタグのようなものですが、検索そのものには
	「AA substitution」以外どれを選んでいても影響を与えません。
Source	: Unimod 登録内容か、Unimod 登録内容をユーザーが一部変更したか、完全に
	ユーザーが作成したものか

また以下は設定をまとめて変更するためのオプションです。

Apply to selected:設定をまとめて変更します。以下の選択肢があります。

- Include in short list :

右側の表で選択(行先頭のチェック欄)された内容を、すべて修飾の short list (パラメーター選択時 にデフォルトで表示される修飾リスト)に含める

- Include in long list :

右側の表で選択(行先頭のチェック欄)された内容を、すべて修飾の long list (パラメーター選択時、"show all mod"オプションを指定する事で初めて表示される項目)に含める

 Include in error tolerant / Exclude from error tolerant:
 右側の表で選択(行先頭のチェック欄)された内容を、Error tolerant 検索で考慮する修飾に含む、 あるいは考慮対象から外す

- Delete: 選択した修飾をリストから除く

以降、さらに修飾の各設定項目について、その設定画面の説明をいたします。例として項目「Phospho」 (リン酸化)の設定を利用いたします。

View Modification :Phospho	
Name	
Title Phospho	
Fullname Phosphorylation	
Delta Specificity Ignore Masses Misc References	
Delta	
Monoisotopic	79.966331
Average	79.9799
Composition	H O(3) P
ОК	Make editable

「Phospho」リンクをクリックするとまず **Title**, **Fullname**欄に名称並びに詳細情報が記された画面が 現れます(上図)。この段階では閲覧のみ可能で編集ができません。画面右下にある「**Make editable**」を クリックすると編集が可能となります(下図)。

Delta Specifi	city Ignore Masses Misc References		
Monoisotopic Average	79.966331 79.9799		
Composition	H O(3) P		
	Symbols 13C V 1 V Add		
Save changes	Cancel Update	Revert to Unimod	Show differences

「Delta」タブでは、修飾が付いた場合の質量の増減分を"Composition"に記載します。設定の際 すぐ下にある「Symbols」で対象の元素記号(または化合物を表す記号)とその数を指定して「Add」を押す 事で「Composition」に反映されます。減少分はマイナスの数字がありそれを指定する事で対応可能です。 また入力ミスなどの場合、Compositon 部分の数字を直接書き換えたり、同じ記号で数字を変えて再び Add 操作を行う事でも対応可能です。

Delta S	pecificity Igr	nore Ma	sses Misc References				
Specifici	ty						
Specificity	Site E	~	Position Anywhere	~	Сору	Delete	Show Details
Specificity	Site R	~	Position Anywhere	~	Сору	Delete	Show Details
Specificity	Site K	~	Position Anywhere	~	Сору	Delete	Show Details
Specificity	Site H	~	Position Anywhere	~	Сору	Delete	Show Details
Specificity	Site C	~	Position Anywhere	~	Сору	Delete	Show Details
Specificity	Site D	~	Position Anywhere	~	Сору	Delete	Show Details
Specificity	Site Y	~	Position Anywhere	~	Сору	Delete	Show Details
Specificity	Site T	~	Position Anywhere	~	Сору	Delete	Show Details
Specificity	Site S	~	Position Anywhere	~	Сору	Delete	Show Details
New Speci	ficity Definitio	n Sh	now All Details				

「Specificity」タブでは修飾が付くアミノ酸残基、あるいは N 末端/C 末端の位置 について設定します (上図)。設定項目がある場合、「Show Details」ボタンを押すことでより詳しい設定内容が確認できます (下図)。

specificity Site D	Position Anywhere	- Сору Г	
Specificity Site Y 🗸	Position Anywhere	Copy [Delete Show Details
Specificity Site T 🗸	Position Anywhere	✓ Copy [Delete Show Details
Specificity Site S 🗸	Position Anywhere	✓ Copy	Delete Hide Details
Classification Post-translational	✓ Group 1		
Visibility In short list 🗹	In long list 🜌	Use in error tole	rant search 🗹
Notes			
Neutral loss	ellite \bigcirc Peptide \bigcirc Required Pept	ide	Delete
Composition		Symbols 13	C 🗸 1 🖌 Add
Neutral loss 💿 Scoring 🔿 Sat	ellite \bigcirc Peptide \bigcirc Required Pept	ide	Delete
Monoisotopic: 97.	976896 Average: 97.9952		
Composition H(3) O(4) P		Symbols 13	C 🗸 1 🖌 Add
New Neutral Loss			
New Specificity Definition Hid	de All Details Show All Details		
Save changes Cancel Up	date	Revert to Unimod	Show differences

表示項目は以下の通りです。

Site	: 修飾が付くアミノ酸またはペプチドの位置(N 末端/C 末端)。
Position	: Site のアミノ酸についての位置の絞り込み。
Classification	: 修飾の分類。Error Tolerant 検索の際、ここで分類したグループ単位で再検索時に
	考慮する修飾を指定することができる

Grou	ı p	: 異なる specificity で同じ group 番号が割り振られている場合、phospho(ST)などの
		ようにアミノ酸が1つにまとめられます。一方 phosphoの場合 STとYは異なる group
		番号が割り振られており、修飾リストでもそれらが分けられて表示されます。
Visib	oility	: modification リストでの表示のされ方。
-	short list	: modification の選択項目として最初から表示。
-	long list	: "show all modifications"のオプションをオンにしないと表示されない。
Note	S	:修飾についてのメモ。

また Neutral loss、すなわち precursor の段階では損失しておらずプロダクトイオンマススペクトル測定の段階で損失する官能基などの塊やそれに対応する質量減少に関する設定もあります。

Neutral loss : 基本的に「**Scoring**」を指定します。Neutral Loss に派生して生じるピークについて、 その存在を特に重視したり、逆に影響を抑える場合などに別のオプションを利用します。

- Scoring : NeutrallLoss により生じるフラグメント側のピークが、マッチング・スコアリングの 対象となります(通常はこちらを選択します)。
- Satellite : Neutral loss で生じたピークをピークリストから外します。マッチング対象の理論値は Neutral loss をしていないものとなります。Neutral loss のピークがノイズと認識 されない分、マッチングスコアが上昇する事が期待されます。
- Peptide : プレカーサーから Neutral loss 分が消失して生じたピークをピークリストから 除きます。マッチングしない無駄なデータが減る分、マッチングスコアが上昇する事が 期待されます。

- Required Peptide :

上記「Peptide」の性質を持ち、かつプレカーサーから Neutral loss 分が消失して 生じたピークがが存在しない場合、Neutral loss に関連する考慮を全くしなく なります。 :参考 : <u>https://www.matrixscience.com/pdf/2005WKSHP2.pdf</u>

Composition: 「**Delta」で指定した修飾がついている状態を基本としてそこからの増減を指定**します。 隣にある「Symbols」と数字、「Add」ボタンと連動していますまた直接の記入にも対応 しています。

Neutral loss するパターンとしないパターンの両方を考慮したい場合、例の図のように片側は空欄 (しない場合)の設定を作成しておく必要があります。

以降タブがありますが、記入が必須ではなく重要度はあまり高くない設定項目です。

「Ignore Masses」タブ(下図)は解析に付随して現れる特定のピークについて、そのピークを入力データから取り除きマッチングの対象から外す際に利用します。

Delta Specificity Ignore Masses Misc References		
Ignore Masses New Ignore Mass		
Save changes Cancel Update	Revert to Unimod Show diffe	erences

「Misc」タブ(下図)は登録エントリーに関してこれまでの設定項目以外のメモ、「その他」となります。

Delta Specificity Ign	ore Masses Misc	References		
Misc				
Creation Date	2002-08-19 19:1	7:11		
Last modified	2018-08-13 13:4	2:59		
User	unimod			
Notes	Neutral loss of p preferential loss	hosphate is typically of phosphoric acid fr	observed from Y/H/D/E/K/C, ra om S/T.	ather than the
New Alternative Name				
Save changes Cancel	Update		Revert to Unimod	Show differences

「Reference」タブは、この link 情報を設定するにあたり参考にした情報について記入します。

Delta	Specificity	Tanoro Massos Misc Poferences		
Deita	Specificity	Ignore masses i misc i Rerefences		
Refere	ences			
Referenc	e 1			Delet
Source		RESID V		
Text		AA0036		
URL			Goto	
Referenc	e 2			Delet
Source		Misc. URL 🗸		
Text		IonSource		
URL		http://www.ionsource.com/Card/phos/phos.htm	Goto	
Referenc	e 3			Dele
Source		RESID 🗸		
Text		AA0037		
URL			Goto	

13-4. Symbols

元素や分子の部分構造の質量に割り当てた記号(Symbol)とその質量を確認する事ができる画面です (下図)。Home -> Configuration Editor -> **Symbols** で開く事ができます。設定変更はできず確認のみ となります。この画面内で定義されいている Symbol は、modification,linker などのページ内で利用 する事が可能です。また各記号に対して実際に割り当てられた質量や部分構造を確認する際にも利用 します。

Mascot Configuration: Symbols						
Symbol	S					
Symbol 4	Name	Monoisotopic	Average	Composition		
13C	Carbon 13	13.003355	13.0034	13C		
15N	Nitrogen 15	15.000109	15.0001	15N		
180	Oxygen 18	17.999160	17.9992	180		
2H	Deuterium	2.014102	2.0141	2H		
Ac	Acetate	42.010565	42.0367	C(2) H(2) O		
Ag	Silver	106.905092	107.8682	Ag		
Al	Aluminium	26.981539	26.9815	AI		
As	Arsenic	74.921594	74.9216	As		
Au	Gold	196.966543	196.9666	Au		
В	Boron	11.009306	10.811	В		
Br	Bromine	78.918336	79.904	Br		
C	Carbon	12	12.0107	C		
Ca	Calcium	39.962591	40.078	Ca		
Cd	Cadmium	113.903357	112.411	Cd		
CI	Chlorine	34.968853	35.453	Cl		
Со	Cobalt	58.933198	58.9332	Co		
Cr	Chromium	51.940510	51.9961	Cr		
Cu	Copper	62.929599	63.546	Cu		
dHex	Deoxy-hexose	146.057909	146.1412	C(6) H(10) O(4)		
F	Fluorine	18.998403	18.9984	F		
Fe	Iron	55.934939	55.845	Fe		
н	Hydrogen	1.007825	1.0079	н		
Нер	Heptose	192.063388	192.1666	C(7) H(12) O(6)		
Hex	Hexose	162.052824	162.1406	H(10) C(6) O(5)		
HexA	Hexuronic acid	176.032088	176.1241	C(6) H(8) O(6)		

[次頁に続きます]

13-5. Linkers

クロスリンクの設定に関連する Linkers に関する設定を行う画面です。Home -> Configuration Editor -> Linkers で開く事ができます。

最初に、設定済みの定義一覧が現れます(下図)。既にある設定をそのまま微調整する場合は項目名の リンクを、現存する設定を残しコピーしてそちらで書き換える場合は「Copy」のリンクをクリックします。 新規の設定を作成するには画面下部の「Add new linker」ボタンを押します。

「Linkers」の設定内容は、**13-3**の modification と概ね同じで、modification と一部連動しています。 この画面の表示内容で不明な点がある場合は **13-3** 前半をご覧ください。

Mascot Configuration: Linkers								
Displaying 16/16	Linkers							
Visibility:	□ Title ♦	Monoisotopic	Average	Composition	Source	Visibility	Err Tol	
Short list	Xlink:BS2G Xlink:BullrBu	96.021129 196.084792	96.0841	H(4) C(5) O(2) H(12) C(9) N(2) O(3)	Unimod	long	yes	Copy Print
Long list	Xlink:Disulfide	-2.015650	-2.0159	H(-2)	Unimod	long	yes	Copy Print
	□ Xlink:Dityrosine	-2.015650	-2.0159	H(-2)	local	long	no	Copy Print
	Xlink:DMP	122.084398	122.1677	H(10) C(7) N(2)	Unimod	long	yes	Copy Print
Error tolerant:	Xlink:DSS	138.068080	138.1638	H(10) C(8) O(2)	Unimod	long	yes	Copy Print
	Xlink:DSSC	113.995309	114.0563	H(2) C(4) O(4)	Unimod	long	yes	Copy Print
Mixed	Xlink:DTBP	172.012890	172.2711	H(8) C(6) N(2) S(2)	Unimod	long	yes	Copy Print
	Xlink:DTSSP	173.980921	174.2406	H(6) C(6) O(2) S(2)	Unimod	long	yes	Copy Print
Classifications: clear	Xlink:EDC	-18.010565	-18.0153	H(-2) O(-1)	Unimod	long	yes	Copy Print
Cross-link	Xlink:EGS	226.047738	226.1828	H(10) C(10) O(6)	Unimod	long	yes	Copy Print
Photo cleavable cross-link	Xlink:SDA	82.041865	82.1005	H(6) C(5) O	Unimod	long	yes	Copy Print
Other cleavable cross-link	Xlink:SMCC	219.089543	219.2365	H(13) C(12) N O(3)	Unimod	long	yes	Copy Print
-	Xlink:test1	185.058912	185.1821	C(10) H(7) N(3) O	local	long	no	Copy Print
	Xlink:test2	159.068414	159.1846	C(10) H(9) N O	local	long	no	Copy Print
Source:	Page 1/1 Go to page [Xlink:B to Xlink:t 🗸] << >	>			Page	size 20 🗸
🗆 Unimod								
Edited Unimod	Add new linker	1ain menu					Che	eck Unimod
🗆 Local							Cont	

以降、各項目の設定画面について、「Xlink:DSS」の設定画面を使って説明します。

Xlink:DSS のリンクをクリックするとまず Title ,Fullname 欄に名称並びに詳細情報が記された画面が 現れます。この段階では閲覧のみ可能で編集ができません。画面右下にある「Make editable」をクリック すると編集が可能となります。

View	View Linker :Xlink:DSS							
Name								
Title Fullname	Xlink:DSS e disuccinimic	dyl suberate (DS	S)					
Delta	Specificity	Ignore Masses	Misc	References				
Delta								
Monoiso	topic			138.	068080			
Average				138.	1638			
Composition H(10) C(8) O(2)								
ОК								Make editable

Delta Specifi	city Ignore Masses Misc References					
Monoisotopic	138.068080 138.1638					
Composition	H(10) C(8) O(2)					
Symbols 13C V 1 V Add						
Save changes Cancel Update Revert to Unimod Show differences						

「**Delta**」タブ(上図)では、リンカーが付く際の質量の増減分を"Composition"に記載します。増減に ついては結合対象となる 2 つのアミノ酸配列を併せた数字で考えます。設定の際、すぐ下にある 「Symbols」で対象の元素記号(または化合物を表す記号)とその数を指定して「Add」ボタンを押す 事で"Composition"に反映されます。減少分は数字にマイナスのものがありますのでそれを指定する事で 対応可能です。また入力ミスなどの場合は Compositon 部分の数字を書き換えたり、同じ記号で数字を変 えながら再び Add 操作を行う事でも対応可能です。

Delta Specificity	Ignore Masses M	isc References			
Specificity					
Specificity Site N	-term 🗙 Positio	Protein N-term 🗙	Copy Delete	Show Details	
Specificity Site K	✓ Position	Anywhere 🗸	Copy Delete	Show Details	
New Specificity Definition Show All Details					
Save changes C	ancel Update		Revert to Unimod	Show differences	

「**Specificity**」タブ(上図)ではリンカーが付くアミノ酸残基、あるいは N 末端/C 末端の位置 について 設定します。設定項目がある場合、「Show Details」ボタンを押すことでより詳しい設定内容が確認 できます。(次頁図)

[次頁に続く]

Delta Spe	cificity Ignore Masses Misc	References					
Specificit	у						
Specificity	Site N-term 🗸	Position Protein N-term 🛩	Copy Delete Show Details				
Specificity	Site K 🗸	Position Anywhere	Copy Delete Hide Details				
Classification	Cross-link 🗸	Group 1					
Visibility	In short list	In long list 🗹	Use in error tolerant search no				
Notes							
Neutral loss	Code I		Pairs With Delete				
Composition			Symbols 13C 🗸 1 🖌 Add				
Description	Intact cross-link						
Neutral loss	Code A		Pairs With Delete				
	Monoisotopic: -17.026549 Average: -17.0305						
Composition	H(-3) N(-1)		Symbols 13C 🗸 1 🖌 Add				
Description	Ammonia quenched monolink						
Neutral loss	Code W		Pairs With Delete				
	Monoisotopic: -18.010565 Ave	erage: -18.0153					
Composition	H(-2) O(-1)		Symbols 13C 🗸 1 🖌 Add				
Description	Water quenched monolink						
Neutral loss	Code T		Pairs With Delete				
	Monoisotopic: -121.073893 A	verage: -121.1350					
Composition	C(-4) H(-11) N(-1) O(-3)		Symbols 13C 🗸 1 🖌 Add				
Description Tris quenched monolink							
New Neutral Loss							
New Specific	city Definition Hide All Details	Show All Details					

Site	: 修飾が付くアミノ酸またはペプチドの位置(N 末端/C 末端)。
Position	: Site のアミノ酸についての位置特定。
Classification	: リンカーの分類ですが、表示の絞り込みなどで使用するタグのようなもので検索
	そのものには影響を与えません。
Group	: 異なる specificity で同じ group 番号が割り振られている場合、Link(ST)などの
	ようにアミノ酸が1つにまとめられます。
Visibility	: modification リストでの表示のされ方
- short list	: : modification の選択項目として最初から表示
- long list	・ "show all modifications"のオプションをオンにしないと表示されない

また Neutral loss に関する設定もあります。必ずしも Loss だけでなく、質量が増加する場合もこちらで 設定をします。この部分は crosslinking の monolink 設定と連動しており、modification にはない独自 の設定項目があるので注意が必要です。

Code: Crosslinking の Monolink 設定で、NeutralLoss のパターンを指定する際に選択
する記号として表示されます。記号は任意で、MASCOT Server 側で特に準備された
ものはありません。ユーザーが連想しやすいものをご利用ください。Linker がペア

ペプチドを構成せず構造の一部が変化するパターンは1つでない事も多いですが、 その複数のパターンを予め作成しておくことができます。 Pairs With : monolink パターンの中で特に対になっている組み合わせがあれば、相手側の Code を記入します。 Composition : 「Delta」で指定した修飾がついている状態を基本としてそこからの増減を 指定します。隣にある「Symbols」と数字、「Add」ボタンによる入力に対応しています。 Description : Code で指定したパターンの内容について後で確認するときに使うメモ欄です。

以下、重要度があまり高くない設定欄です。不明な場合は空欄でも問題ないことがほとんどです。

「Ignore Masses」タブ(下図)は解析に付随して現れる特定のピークについて、そのピークを入力データから取り除きマッチングの対象から外す際に利用します。

Delta Specificity Ignore Masses Misc	References				
Ignore Masses					
Ignore Mass 1 Delete					
Composition					
Symbols 13C 🗸	Add				
New Ignore Mass					
Save changes Cancel Update	Revert to Unimod	Show differences			
The chemical composition of the modification as a delta between the modified and unmodified residue or terminus. For example, if the modification removes an H and adds a CH3 group, the Composition would be shown as H(2) C. The formula is displayed and entered as 'atoms', optionally followed by a number in parentheses. The number may be negative and, if there is no number, 1 is assumed. Hence, H(2) C is the same as H(2) C(1)					

「Misc」タブは登録エントリーに関してこれまでの設定項目以外のメモ、「その他」となります。

Delta	Specificity	Ignore Masses	Misc	References				
Misc								
Creation Date 2017-08-17 14:12:08								
Last mod	lified	2018-09-1	13 11:4	40:08				
User		unimod						
Notes								1
Alternati	ve name 1	bis[sulfos	uccinin	nidyl] suberat	e (BS3)		Delete	
New Alt	ernative Nan	ne						_
Save changes Cancel Update Revert to Unimod Show difference						Show differences		

「Reference」タブは、この link 情報を設定するにあたり参考にした情報について記入します。

Delta Specificity I	gnore Masses Misc References			
References				
Reference 1		Delete		
Source	Misc. URL 🗸			
Text	ThermoFisher data sheet			
URL	https://www.thermofisher.com/order/catalog/product/21655 Goto			
New Reference				
Save changes Cancel Update Revert to Unimod Show differences				

13-6. Enzymes

タンパク質からペプチドに切断するパターンに関する設定を行う画面です。Home -> Configuration Editor -> Enzymes で開く事ができます。

最初に設定済みの定義一覧が現れます(下図)。既にある設定をそのまま微調整する場合は「Edit」の リンクをクリックします。既存のものとは異なる新規の設定を作成するには画面下部の「Add new enzyme」ボタンを押します。

Mascot Configuration: Enzymes							
Enzymes							
Title	Sense	Cleave at	Restrict	Independent	Semispecific		
Trypsin	C-Term	KR	P	no	no	Edit	Delete
Trypsin/P	C-Term	KR		no	no	Edit	Delete
Arg-C	C-Term	R	Р	no	no	Edit	Delete
Asp-N	N-Term	BD		no	no	Edit	Delete
Asp-N_ambic	N-Term	DE		no	no	Edit	Delete
Chymotrypsin	C-Term	FLWY	P	no	no	Edit	Delete
CNBr	C-Term	М		no	no	Edit	Delete
CNBr+Trypsin	C-Term C-Term	M KR	Ρ	no	no	Edit	Delete
Formic_acid	N-Term C-Term	D D		no	no	Edit	Delete
Lys-C	C-Term	К	P	no	no	Edit	Delete
Lys-C/P	C-Term	K		no	no	Edit	Delete
LysC+AspN	N-Term C-Term	BD K	Ρ	no	no	Edit	Delete
Lys-N	N-Term	K		no	no	Edit	Delete
PepsinA	C-Term	FL		no	no	Edit	Delete
semiTrypsin	C-Term	KR	Р	no	yes	Edit	Delete
TrypChymo	C-Term	FKLRWY	P	no	no	Edit	Delete
	N-Term	J					
TrypsinMSIPI	C-Term	KR	P	no	no	Edit	Delete
	C-Term	J					
TrypsinMSIDI/D	N-Term	J		00	00	Edit	Delete
in ypsini 151F1/F	C-Term	JKR		110	110	Luit	Delete
V8-DE	C-Term	BDEZ	Р	no	no	Edit	Delete
V8-E	C-Term	EZ	Р	no	no	Edit	Delete
NoCleave	C-Term	J	ABCDEFGHIJKLMNOPQRSTUVWXYZ	no	no	Edit	Delete
None							
Add new enzyme Main menu							

Edit Enzyme: Trypsin						
Genera	l					
Title		Tryps	in			
Independe	ent					
Semispeci	fic					
Compo	nonte					
compo	Conso		Cleave At	Restrict Delete		
#	Sense			Restrict Delete		
1	C-lefm ♥		KK			
Add				Delete		
Test						
Protein :						
MSEELSQM PLLEVIKII GSFGATAL	<pre><pssaqslslrec .glimwlvkrrmc<="" iasvasvifvgfa="" pre=""></pssaqslslrec></pre>	GRNRFPFL CVTLAGS GVKPKDN	SLSQREGRFFPS AAALVVSTPVFI PPPAGLPPNSGA	SLSLSERDGRKFSFLSMFSFLM * IIFSPVLVPATIATVVLATGFTAG * JAGAGGAQSLIKKSKAKSKGGL		
#	Start	End	Peptide			
1	1	1	м			
2	1	18	MSEELSQKPS	SAQSLSLR		
3	2	18	SEELSQKPSS	AQSESER		
4	19	21	EGR			
5	22	23	NR			
6	24	32	FPFLSLSQR			
7	33	35	EGR			
8	36	45	FFPSLSLSER			
9	46	48	DGR			
10	49	49	K			
11	50	6/	FSFLSMFSFL	. ΜΡΕLΕΥΙΚ ΓΕνοπαριντι αι ορααλί υψοτι ουστιτρούμι υπατιατινμ		
12	68	140	ATGFTAGGSF	GATALGUINA GSAAALYYSI FYFIIFSFYL YFAITATYYL		
13	141	141	R			
14	142	142	R			
15	143	148	MGVKPK			
16	149	172	DNPPPAGLPP	NSGAGAGGAQ SLIK		
17	173	173	K			
18	174	175	SK			
19	176	1//	AK			
20	1/8	1/9	OK CL K			
21	184	105				
23	188	188	K			
24	189	191	MLK			
25	192	193	SK			
26	194	197	FGGK			
27	198	198	к			
28	199	200	GK			
Test Enzy	/me					

Title : 設定名

Independent : 2 つ以上の Components が設定に含まれている時、2 つの設定をばらばらに実施して その後混入されたケースを仮定して切断されたパターンを考慮する(チェック)か、それ とも同時に切断パターンが有効になるケースを考慮する(チェック無し)か

Semispecific : N または C 未端の片側が Components で定義した内容、もう片側が任意の場所で 切断する切断方法を考慮するかどうか

- **Components** : 切断パターンに関する設定。以下項目を設定します。
 - **Sense** : 切断箇所が N 末端か C 末端か
 - Cleave At: どのアミノ酸残基を認識して切断するか
 - **Restrict** : 切断残基の前後(N-term 切断なら前、C-term 切断なら後ろ)に指定残基がある場合 切断しない

Test Enzyme ボタン: 設定内容によってタンパク質配列が実際にどのように切断されるかのテスト。
切断パターンの Components は2つ設定する事もできます。下図は「CNBr+Trypsin」設定の例です。

Title		CNBr+Trypsin		
Independe	ent			
Semispeci	fic			
Compo	nents			
#	Sense	Cleave At	Restrict	Delete
1	C-Term 🗸	М		
				_
2	C-Term 🗸	KR	P	

13-7. Instruments

プロダクトイオンスペクトルのフラグメントピーク理論値作成を考慮するイオンシリーズに関する設定を 行う画面です。Home -> Configuration Editor -> Instruments で開く事ができます。

Instruments																
Ion series	Default	ESI QUAD TOF	MALDI TOF PSD	ESI TRAP	ESI QUAD	ESI FTICR	MALDI TOF TOF	ESI 4SECTOR	FTMS ECD	ETD TRAP	MALDI QUAD TOF	MALDI QIT TOF	MALDI ISD	CID+ETD	EThcD	EAD
1+	x	x	х	x	x	x	x	x	x	x	x	x	x	x	x	x
2+ (precursor>2+)	x	x		x	x	x		x	x	x	x			x	x	x
2+ (precursor>3+)																
immonium			х				x	x			x	х				
а	x		х				x	x				х	x		x	x
a*	x		х				x					х			x	
a0			х				x					х			x	
b	х	x	х	х	х	х	х	x			x	х		x	x	x
b*	x	x	x	x	x	x	x	x			x	x		x	x	
b0		x	x	x	x	x	x	x			x	x		x	x	
с									x	x			x	x	x	x
×	v		v	v	×	v	v			v	v	v				v
y w	×	×	~	×	×	×	×	~	~	~	×	×	~	×	×	~
y≁ 	~	×		Ŷ	Ŷ	Ŷ	Ŷ				×	×		Ŷ	×	
7		~		~	~	~	~	×			~	~		~	~	
z vb							x	x			x	x				
va							x	x			x	x				
y must be																
significant																
y must be highest score																
z+1									x	х				х	x	x
d							x									
v							x									
w							x							x	x	x
z+2									x	x			x	x	x	x
Min internal mass																
Max internal mass	700	700	700	700	700	700	700	700	700	700	700	700		700		
Refine results with machine learning																
DeepLC model for retention times	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸
MS2PIP model for spectral similarity	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸
		Delete	Delete	Delete	Delete	Delete	Delete	Delete	Delete	Delete	Delete	Delete	Delete	Delete	Delete	Delete
	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit	Edit
New Instrument	Main menu	1														
y or y++ must be h	ighest scorir	ig series														
								11								

最初に、設定済みの定義一覧が現れます。既にある設定をそのまま微調整する場合は項目名の下にある 「Edit」リンクをクリックします。既存のものとは異なる新規の設定を作成するには画面下部の「New Instrument」ボタンを押します(上図)。

MS2 データとのマッチングを考慮するイオンシリーズや電荷についてチェックを入れ、設定作成後に 「Save changes」ボタンを押すことで設定が保存されます(次ページ上図)。

設定には refinement に関する設定を組み込ませることができます。Proteome Discoverer との連携時など、Instrument 設定項目はあるのに refinement に関する設定項目がない場合などにこの設定のご利用をご検討ください。

Instruments								
Ion series	New	Default	ESI QUAD TOF	MALDI TOF PSD	ESI TRAP	ESI QUAD	ESI FTICR	м/ тоі
1+	Z	х	х	х	x	х	х	
2+ (precursor>2+)		х	x		x	x	x	
2+ (precursor>3+)								
immonium				x				
а	<	х		х				
a*	<	х		х				
a0				х				
b	<	х	х	х	x	х	х	
b*		х	х	х	х	х	х	
b0			x	х	х	х	х	
с								
x								
у	Image: A start and a start	х	x	х	x	x	х	
у*		х	x		x	x	х	
уО			x		x	x	x	
z								
yb								
уа								
y must be significant								
y must be highest score								
z+1								
d								
v								
w								
z+2								
Min internal mass	0							
Max internal mass	0	700	700	700	700	700	700	1
Refine results with machine learning								
DeepLC model for retention times	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(nor
MS2PIP model for spectral similarity	HCD20: 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(none) 🗸	(nor
Instrument name:	MS2PIP:HCD	2021				Save ch	anges Car	ncel

.DI D	CID+ETD	EThcD	EAD	MS2PIP:HCD2021
	х	х	х	х
	x	х	х	x
		х	х	x
		x		x
	v	X		
	×	×		X
	Ŷ	Ŷ		~
	x	x	×	
	~	~	^	
	х	x	х	х
	x	х		x
	х	х		
	х	х	х	
	x	x	х	
	x	х	х	
	700			
	700			
				x
	(none) v	(none) 😪	(none)	(none) ×
/	(none) V	(none) V	(none)	(none) +
) ~	(none) 🗸	(none) 🗸	(none)	HCD201 🗸
ete	Delete	Delete	Delete	Delete
it	Edit	Edit	Edit	Edit

13-8. Quantitation

タンパク質の定量解析に関する設定を行う画面です。Home -> Configuration Editor -> **Quantitation** で開く事ができます。

最初に設定済みの定義一覧が現れます(下図)。既にある設定をそのまま微調整する場合は項目名の リンクを、現存設定を残しコピーしてそちらで書き換える場合は「Copy」のリンクをクリックします。既存の ものとは異なる新規の設定を作成するには画面下部の「New quantitation method」ボタンを押します。

以降、「TMT 6 plex」の設定を使って各画面の説明をいたします。

Juantitation Mathada				
Name	Protocol			
None	null			
TRAO 4plex	reporter	Copy	Delete	Prin
TRAO 4plex (protein)	reporter	Сору	Delete	Prin
TRAO 8plex	reporter	Сору	Delete	Prir
rmT 6plex	reporter	Copy	Delete	Prin
rmt 2plex	reporter	Сору	Delete	Prir
rmt 10plex	reporter	Сору	Delete	Prir
rMTpro 16plex	reporter	Сору	Delete	Prin
DiLeu 4plex	reporter	Сору	Delete	Prin
180 multiplex	multiplex	Сору	Delete	Prin
SILAC K+6 R+6 multiplex	multiplex	Сору	Delete	Prir
PTL (Succinyl and IMID) multiplex	multiplex	Сору	Delete	Prir
CPL duplex pre-digest [MD]	precursor	Сору	Delete	Prir
CPL duplex post-digest [MD]	precursor	Сору	Delete	Prir
CPL triplex pre-digest [MD]	precursor	Сору	Delete	Prir
CPL quadruplex pre-digest [MD]	precursor	Сору	Delete	Prir
180 corrected [MD]	precursor	Сору	Delete	Prir
15N Metabolic [MD]	precursor	Сору	Delete	Prir
15N + 13C Metabolic [MD]	precursor	Сору	Delete	Prir
SILAC K+6 R+10 [MD]	precursor	Сору	Delete	Prir
SILAC K+6 R+10 Arg-Pro [MD]	precursor	Сору	Delete	Prir
SILAC K+6 R+6 [MD]	precursor	Сору	Delete	Prir
SILAC R+6 R+10 [MD]	precursor	Сору	Delete	Prir
SILAC K+8 R+10 [MD]	precursor	Сору	Delete	Prir
SILAC K+4 K+8 R+6 R+10 [MD]	precursor	Сору	Delete	Prir
CAT ABI Cleavable [MD]	precursor	Сору	Delete	Prir
CAT D8 [MD]	precursor	Сору	Delete	Prir
Dimethylation [MD]	precursor	Сору	Delete	Prir
NBS Shimadzu [MD]	precursor	Сору	Delete	Prir
Acetylation [MD]	precursor	Сору	Delete	Prir
_abel-free [MD]	replicate	Сору	Delete	Prir
Average [MD]	average	Сору	Delete	Prir
New guantitation method Main menu				

画面上部には「Name」と「Description」があり、設定項目の識別情報として利用します。

「Method」タブではタンパク質の定量値を計算する条件やペプチド定量値からタンパク質の定量値を 計算する方法に関連する設定項目が集められています。

Edit Quantitation Method:TMT 6plex							
Name							
Name TMT 6plex	De	scription Pro	teome Sc	iences 6-pl	ex Tandem Ma	iss Tags <mark>(</mark> I	२)
Method Protocol C	omponent Report Ratio	Integration	Quality	Outliers	Normalisation	XML	
Method							
Property	Value				Acti	on	
Constrain Search							
Protein Ratio Type	median 🗸						
Protein score Type	Define						
Report Detail							
Show subsets	Define						
Require bold red				Clear			
Minimum Peptides	2						
Significance Threshold	Define						
comp qualifier			A	Add Compo	sition		
seq qualifier			ŀ	Add Sequer	nce		
Modification groups	TMT fixed	Delete	ŀ	Add Modific	ation Group		
Save changes Cance	21						
If any modification grou matches that can be use	p specifies exclusive mode d for quantitation will be	e, then apply returned.	this cons	traint durin	g the search s	o that on	lγ
							//

Constrain Search	: 「Quality」タブの「Exclusion」項目で設定された修飾について、
	検索結果から除いてレポートするかどうかを指定します。
Protein Ratio Type	: アサインペプチドの定量情報からタンパク質の定量値を計算する方法。
	median, average, weighted (intensity による重みづけをした average)
	から選びます。結果画面で変更可能。
Protein score Type	: タンパク質のスコア算出方法でデフォルト設定からの変更を希望する時に
	指定。 standard または mudpit から選択します。
Report Detail	: ペプチドレベルでの定量値を結果画面に表示するかどうか。
Show subsets	: subsetのタンパク質を結果画面に表示するかの設定でデフォルトから変更希
	望の際に指定。0(全く表示させない)から 1(すべて表示させる)の間の数値。
Require bold red	: 定量計算対象のペプチドを bold red (同定基準を超えランクが1位) に
	限定するかどうか
Minimum Peptides	: タンパク質にアサインされるペプチド数の最低値。結果画面で変更可能。
Significance Threshold	1: ペプチドの同定基準をデフォルト設定から変更したい場合に指定。

comp qualifier	: ペプチドに含まれるアミノ酸残基数による限定。文法は Sequqnce Query 法
	の記述と同じです。 <mark>例) *[C]→C を必ず1つ含む</mark> 、など
seq qualifier	: ペプチドに含まれるアミノ酸配列による限定。文法は Sequence Query 法の
	記述と同じです。
	例) *-TSL →N 末端または C 末端から TSL という並びの配列、など
Modification groups	: 定量計算を行う際必ず指定する修飾の組を設定します。図例では
	「 TMT fixed 」というグループがあり、グループ内で TMT6plex (N-term) と

TMT6plex (K) が定義されています。グループの設定画面は以下の通りです。

Property	Value			Action
Name	TMT fixed			
Mode	fixed 🗸			
Required				
Modification	TMT6plex (N-term)	~	Delete	
	TMT6plex (K)	~	Delete	Add modification
Unmodified				Add unmodified
Local definitions				Add local definition

: 修飾グループの名称。
: fixed または variable。
: 定量計算を行う上で、この修飾が必ず付いていることが求められるかどうか
:修飾設定。
: 検索対象から除外するアミノ酸残基や N/C 末端。
: Quantitation 内部だけで使用する修飾を指定可。

「Protocol」タブでは、実施する定量解析が MASCOT で定義するどのパターンの定量解析方法かを 指定するとともに、その手法独自の関連設定項目が表示されます(下図)。表示例は reporter の設定項目 ですが、その他の設定値は選択されたプロトコルによって大きく異なります(実際に変更してみると 関連する設定項目が切り替わります)。項目名にカーソルを合わせると、下の欄に説明文が現れるので 詳しくはそちらをご参照ください。

Method Protocol Compor	ent Report Ratio Integration Quality
Protocol	
Property	Value
Protocol	reporter 🗸
Reporter Tolerance	Define
Reporter Tolerance Unit	Define
Save changes Cancel	

Protocol : MASCOT で定義される定量解析プロトコルの選択、以下の項目があります。

- reporter : MS2、特定領域に表れる各ピークの強度を定量計算に利用。
- precursor: タグなどの影響で質量が異なる同一ペプチドのペアを1データ内から探し、
 同定ペプチドの MS1(XICs)情報を利用して定量計算に利用。Mascot Distiller が必要
- multiplex: MS2,同定ペプチドのフラグメントピークの強度を定量計算に利用。
- **replicate**: ラベルフリー定量、複数のデータにまたがった解析。同定ペプチドの MS1(XICs) 情報を利用して定量計算に利用。Mascot Distiller が必要。
- average : ラベルフリー定量、複数のデータにまたがった解析。各タンパク質の定量値について 強度が強い top N(N は整数)のペプチドデータを使い計算するとともに

reference との比較で定量値を算出

右図例は Average プロトコルの場合です。上記と 表示項目が異なります。

Method Protocol	Component Report Ratio Integra
Protocol	
Property	Value
Protocol	average 🗸
Num peptides	З
Selection	unique_sequence 🗸
Reference Accession	
Reference Database	
Reference Amount	1.0

「Component」タブでは、定量計算を行うために定義した各データシリーズ(Component)について、 名称や質量などの設定を行います(下図)。こちらも Protocol により設定項目が変化します。以下 reporter の例については各項目について簡単に説明しますが、各プロトコル、各項目の詳細は実際の画面で カーソルを各項目にあわせた際、画面下部の説明欄に表示される内容をご覧ください。

Method Prot	cocol Component	Report Ratio Integr	ation Quality	Outliers	Normalisation	XML	
Component	t						
Components:	126 🗸	New	Copy Delet	:e			
Property	Value						Action
Component	126						
M/Z	Monoisoto	pic : 126.127726	Average :	126.2188			
Corrections	Type:	AB certificate 🗸	Shift:	-2			
	Element:	\sim		0.0		Pelete	
	Type:	AB certificate 🗸	Shift:	-1			
	Element:	\sim		0.1		Pelete	
	Type:	AB certificate 🗸	Shift:	1			
	Element:	~		8.5		elete	
	Type:	AB certificate 🗸	Shift:	2			
	Element:	\checkmark		0.5	C	elete	Add correction

Components : 定義済みの「Component」一覧(右図)

Component	: 選択している Component の名称
M/Z	: reporter のピークの位置
Corrections	:各 component で生じるピークシフトに
	ついて、シフトする数値をその割合の設定。

Components:	126 🗸
Property	126
rioperty	127
Component	128
M/Z	129 _t
	130
Corrections	131
	Element

「Report Ratio」タブでは結果で表示する比について定義します。分母や分子に使用される Components を指定しますが、単純な設定だけでなく、要素同士を足したりする設定も可能です。

Method Protocol	Component Report Ratio	Integration	Quality	Outliers	Normalisation XML
Report Ratio					
Property	Value				Action
Report Ratio	127/126				Delete Report Ratio
Numerator	127 ➤ Coefficien	t: 1.0			Add numerator
Denominator	126 🗸 Coefficien	t: 1.0			Add denominator
Report Ratio	128/126				Delete Report Ratio
Numerator	128 🗸 Coefficien	t: 1.0			Add numerator
Denominator	126 🗸 Coefficien	t: 1.0			Add denominator
Report Ratio	129/126				Delete Report Ratio
Numerator	129 🗸 Coefficien	t: 1.0			Add numerator
Denominator	126 🗸 Coefficien	t: 1.0			Add denominator
Report Ratio	130/126				Delete Report Ratio
Numerator	130 🗸 Coefficien	t: 1.0			Add numerator
Denominator	126 🗸 Coefficien	t: 1.0			Add denominator
Report Ratio	131/126				Delete Report Ratio
Numerator	131 🗸 Coefficien	t: 1.0			Add numerator
Denominator	126 🛩 Coefficien	t: 1.0			Add denominator
New Report Ratio					
Save changes Cano	cel				

■ 複雑な設定については以下 URL をご覧ください。

https://www.matrixscience.com/help/quant_overview_help.html#CONCEPTS

■ ラベルフリー定量、replicate プロトコルでの Component や Report Ratio の設定例については 以下資料の P.16~ をご覧ください。

https://www.matrixscience.co.jp/supportpdf/MascotDistiller_replicatesQuantTutorial.pdf

「Integration」タブは Precursor の intensity について、 同定ペプチドのピーク強度を足し合わせていく際のルールに ついての設定で、MS1 関連の定量手法で設定が必要な項目 です。ペプチドが検出されたポイントを中心に Retention time を前後しながらターゲットとなるペプチドピークの intensity を定量値として足し合わせていく際のルールです。 reporter プロトコルではデフォルト設定のように、基本的に 「none」設定でご利用頂く事になります(右図)。

Method Protocol	Component	Report Ra	atio	Integration	Qua
Integration					
Property	Valu	ue			
Integration Method	nor	ne 🗸			
Integration Source	sur	vey 🗸			
Simple ratio					
Allow Elution Shift					
Elution Time Delta	De	fine			
Elution Profile Correlat Threshold	tion De	fine			
All Charge States					
All Charge States Thre	eshold				
Matched Rho					
XIC Threshold					

よってここでは TMT でなく 「Label-free[MD]」の設定を使って Integration の各項目を説明します(下 図)。 ______

Method Protocol	Component	Report Ratio	Integration	Quality	Ou
Integration					
Property	Val	ue			
Integration Method	sim	npsons 🗸			
Integration Source	sur	vey 🗸			
Simple ratio					
Allow Elution Shift	~				
Elution Time Delta	500	0.0	Unit : second	s 🖌 🛛 Cle	ear
Elution Profile Correlat Threshold	ion 999	9	Clear		
All Charge States					
All Charge States Thre	shold 0.2	.0			
Matched Rho	0.8				
XIC Threshold	0.1				
XIC Max Width	250)			
XIC Smoothing	3				

Integration Method : データの統合(積分)方法。

- **none** : 結合しない。
- simpsons:シンプソンズ則に基づいた積分。
- **trapezium**: 台形公式に基づいた積分。

Integration Source : 何のデータを積分するかについての設定。

- **survey** : survey scanのPrecursorピーク面積。

- **zoom** : zoom scanのPrecursorピーク面積。
- header : ヘッダー情報に記載されている XIC の値。
- fragments: MS/MS のフラグメントピーク面積の合計。
- **mrm** : MRM, multiple reaction monitoring
- Simple ratio : チェックが入っている時は合計値がそのまま計算に利用されます。 チェックされていない場合、近似曲線の勾配を比率とします。

Allow Elution Shift : 溶出時間のタイムシフトを容認するか

(データ間の RT アライメントを実施するかどうか)。

Elution Time Delta : アライメントの許容時間。

Elution Profile Correlation Threshold :

XIC ピークの各スキャンの成分強度から近似直線を書かせた際、直線と 各スキャンとの標準誤差をスキャン選定の閾値として利用。

All Charge States : 他の電荷で同定されたペプチドのピークを定量計算で合算するかどうか All Charge States Threshold :

> 上記「All Charge States」にチェックが入っている場合、最も強度が強い 電荷に対してここで設定した割合以上の強度ももつ電荷のピークを合算 対象として定量計算に利用。

Matched Rho	: 同位体クラスターピークの実測値と理論値の相関係数がこの設定値以上の
	時定量計算に利用。
XIC Threshold	: XIC 領域最大値に対しての割合。XIC の強度について、計算対象領域は
	XIC 強度がこの設定値以上の割合の値であることが求められます。
XIC Max Width	: XIC 計算対象領域の拡張を考慮するスキャン数の上限。
XIC Smoothing	: スムージングのパラメーターで、設定値を n とした時 2n+1 個の
	Savitzky-Golayコンボリューション整数のセットによってスムージングを実施
	(数字が大きいほど細かくなるが計算時間がかかる)。

Matched Rho については以下資料も補足資料としてご参照ください。 <u>https://www.matrixscience.co.jp/supportpdf/MascotDistiller_replicatesQuantTutorial.pdf</u> Matched Rho は P.42~の「Correlation coefficient」に該当します。

「Quality」タブは定量計算の対象とするペプチドに関する選定条件です(下図)。

Method Protocol Compo	nent Report Ratio	Integration	Quality	Outliers	Normalisation	XML
Quality						
Property	Value					Acti
Minimum precursor charge	1					
Isolated precursor						
Isolated Precursor Threshold	0.5					
Minimum a(1)	0.0					
Peptide Threshold Type	at least homolog	у 🗸				
Peptide Threshold Value						
Unique Pepseq						
Exclusion					Add Exc	lusion
Save changes Cancel						

Minimum precursor charge :

計算対象とするペプチドの電荷の下限。

Isolated precursor :

precursor ピーク付近の全ピーク面積に対して、precursor のクラスターピークの面積が 占める割合を XIC 計算対象とするペプチドの選定の判断に利用するかどうか。Distiller 上の 結果画面で「**Fraction**」として表示される値と同じです。

https://www.matrixscience.co.jp/supportpdf/MascotDistiller_replicatesQuantTutorial.pdf

P.40~ に、図と共に Fraction に関する説明がございます。

Isolated Precursor Threshold :

上記「Isolated precursor」で使用する閾値。

Minimum a(1) :

最大ピーク強度に対して a(1)ピークの強度として求める割合。

Peptide Threshold Type :

定量計算対象とするペプチドについて、スコアや期待値、同定基準値を使った フィルターリング。

Peptide Threshold Value :

上記「Peptide Threshold Type」でスコアや期待値を選択した際、閾値に使われる数字 Unique Pepseq : ユニークペプチドのみを結果に表示。

Exclusion : ここで指定した修飾(グループ)がついているペプチドを定量計算から外します。

「Outliers」タブはペプチドの定量値からタンパク質の定量値を計算する際、「外れ値」の扱いをどうするかについての設定です(下図)。

Outlier method:外れ値を除く方法

- none :外れ値を除く処置を行わない
- **dixons** : Dixon法
- **auto** : データ数によって Dixon 法または

Rosner 法のどちらかを選択

- grubbs : Grubbs 法
- **rosners** : Rosner法

Outliers	
Property	Value
Outlier method	auto 🗸
	none
	dixons
Save changes Cancel	auto
	_ grubbs _
method of detecting outliers	rosners

「Normalisation」タブは数値の normalisation に関する設定です(下図)。最初から異なる事を前提 としたデータの解析の場合"none"に、normalisation に使用可能なデータがある場合は以下ご案内に 基づきご利用ください。

Method Protocol Compor	ent Report Ratio	Integration	Quality	Outliers	Normalisation
Normalisation					
Property	Value				Actio
Normalisation method	none 🗸				
Normalisation Peptides				Add Pepti	de
Normalisation Proteins				Add Prote	in
Save changes Cancel					

Normalisation method :

- **none** : normalisation を実施しない。
- sum : (reporter プロトコルのみ) MS/MS スペクトルのレポーターイオンの強度の和が サンプル間で同じになる前提とする。
- average : ペプチドの ratio についてサンプル間で幾何平均が同じになる前提とする。
- median : ペプチドの ratio についてサンプル間で中央値が同じになる前提とする。

Normalisation Peptides: Normalisation に使用するペプチド(配列)を指定。 Normalisation Proteins: Normalisation に使用するタンパク質(Accession)を指定。

「XML」タブは設定ファイル内で設定内容が記述されている、XML フォーマットを実際に表示して確認する とともに、場合によっては直接編集するための設定欄です。記述変更後「Update method」ボタンを押す ことで記述内容が適用されます

Method Protoc	ol Component	Report Ratio	Integration	Quality	Outliers	Normalisation	XML
XML							
Property	Value						
<pre>xml </pre> <pre><method constrain_search="false" description="Proteome Sciences 6-plex Tandem Mass Tags(R)" min_num_peptides="2" name="TMT 6plex" protein_ratio_type="median" report_detail="true" require_bold_red="true"> TMT6plex (N-term) TMT6plex (K) TMT6plex (K) <td></td></method></pre>							
Update method							
Save changes	Cancel						

13-9. Crosslinking

クロスリンクペプチド検索に関する設定を行う画面です。Home -> Configuration Editor -> Crosslinking で開く事ができます。

最初に設定済みの定義一覧が現れます。既にある設定をそのまま微調整する場合は項目名のリンクを、 現存設定を残しコピーしてそちらで書き換える場合は「Copy」のリンクをクリックします。既存のものとは 異なる新規の設定を作成するには画面下部の「New quantitation method」ボタンを押します。

Mascot Configuration: Crosslinking Methods							
Crosslinking Methods							
Name	Strategy						
None	None						
Disulfide bridge in Lysozyme	Brute-force	Copy	Delete	Print			
EDC MND1_ARATH+HOP2_ARATH	Brute-force	Сору	Delete	Print			
HSA Xlink:DSS	Brute-force	Copy	Delete	Print			
New crosslinking method Main menu							

以降、各項目の設定画面について、「HSA Xlink:DSS」の設定を使って説明をいたします。

画面上部には「Name」と「Description」があり、設定の識別に利用します。

「Method」タブで GUI での設定を行う事ができます(下図)。

	Edit Crosslinking Method:HSA Xlink:DSS						
Name							
Name HSA Xlink:DSS Description							
Method	XML						
Method							
Property	Value					Action	
Strategy	Brute-force V						
InterLink							
LoopLink							
Linkora	Linkor (1				
	Monolink :		DoesNotPairWith :	Xlink:DSS (K) Xlink:DSS (Protein N-term)	Delete		
	Linker : Monolink :	Xlink:DSS (Protein N-term)	DoesNotPairWith :	Xlink:DSS (K) Xlink:DSS (Protein N-term)	Delete		
Accessions	Database name :		Accession : ALBU	HUMAN	Delete	Add parameter	
Filters	Name : MinLen		Value : 2		Delete	Add parameter	
Settings	Add parameter						
Save chan	ges Cancel						

Strategy	: クロスリンクのペアペプチドを探す方法。Ver.2.8 では実施の選択肢が
	「Brute-force」(総当たり)の1択です。
InterLink	: 異なるタンパク質のペプチド間の結合を考慮するか。
IntraLink	: 同一種類のタンパク質の異なるペプチド間の結合を考慮するか。
LoopLink	: 同一種類のタンパク質・同一ペプチド内での結合を考慮するか。
Linker	: リンカーの種類。リンカー設定より選択。
Monolink	: 一方のペプチドのみにリンカーが付き実質修飾のようになるケース。リンカーとして
	設定していた状態と構造が異なるため、予め「 linkers(13-5) 」内で定めておいた質量
	変化パターンを Neutral Loss として定義した Code を選択します。Code が何を
	示しているかは、Linkers の設定を確認する必要があります。
DoesNotPairWi	th : 同時に考慮しない Linker の組み合わせ。
Accessions	
Database name	: クロスリンク検索を考慮するタンパク質について、対象のデータベースを特定したい
	場合にデータベース名を記入して使用します。Accession の記載がない場合は
	データベースエントリーを網羅的に探索しますが基本的に非推奨です。どうしても
	利用したい場合はエントリー数が非常に少ない(interlink なら 10 以下、
	intralink なら 100 以下)、ペプチド組み合わせを考慮するタンパク質の対象が
	100 以下となるような選び方ができるデータベースを準備してください。

Accession : クロスリンク検索を考慮するタンパク質の Accession を指定

Filters : crosslink 検索対象とする候補ペプチドの条件

- **MinPrecursorMr** : 候補ペプチドの質量の最低値
- MinLen : 候補ペプチドの残基長の最低値
- MinCharge : 候補ペプチドの電荷の最低値
- Settings : そのほかの設定。現在は以下一つのみ
 - MaxProteins:考慮するタンパク質数の最大数。サーバーへの負荷を制御したい場合などに利用

「XML」タブは設定ファイル内で設定項目の内容が記述されている、XML フォーマットを実際に表示して 確認し、場合によっては直接編集するための設定欄です(下図)。編集後「Update method」ボタンを押す ことで編集内容が適用されます。

Edit Crosslinking Method:HSA Xlink:DSS					
Name					
Name HSA Xlink:	DSS Description				
Method XML					
XML					
Property	Value				
xml	<mxm:method description="" name="HSA Xlink:DSS" strategy="Brute-
force"> <mxm:linkers> <mxm:linker modfilename="Xlink:DSS (K)"> <mxm:monolink>A</mxm:monolink> <mxm:monolink>W</mxm:monolink> <mxm:linker modfilename="Xlink:DSS (Protein N-term)"> <mxm:linker modfilename="Xlink:DSS (Protein N-term)"> <mxm:monolink>A</mxm:monolink> <mxm:monolink>M</mxm:monolink></mxm:linker></mxm:linker></mxm:linker></mxm:linkers></mxm:method>				
Update method					
Save changes	Cancel				

13-10. Configuration Options

MASCOT Server のオプションに関する設定を行う画面です。Home -> Configuration Editor -> Configuration Options で開く事ができます(次頁図)。

パラメーターには空欄の場合 MASCOT Server が予め定めているデフォルト値を適用する場合と、設定 値がない場合の 2 パターンがあります。また Configuration Options にデフォルトで表示されていない オプションも存在し、その場合は MASCOT Server が定めるデフォルト値が適用されていますが、その項目 名と設定値をこの画面で明示する事で設定値を変更する事もできます。

設定画面の一番下にある「Add New Options」を押すと、一覧表示にはなかったオプションについて 設定項目名と設定値を入力する欄が現れます。

すべての設定変更が完了した時点で「Apply」ボタンを押すことで変更内容が適用されます。

Detailed descriptions of individual options can be found in Chapter 6 of the <u>Mascot Setup and</u> Installation manual.					
To drop an option, clear the value field.					
No changes are written to mascot.dat until you choose APPLY.					
ProxyType Auto					
proxy_server host					
proxy_server port					
proxy_username					
proxy_password					
UseHTTPProxyForFTP	⊖yes ◉no ⊖clear				
UseHTTPProxyForHTTPS	⊖yes ◉ no ⊖ clear				
	Test Proxy Settings				
SaveLastQueryAsc	● yes ○ no ○ clear				
SaveEveryLastQueryAsc	● yes ○ no ○ clear				
LastQueryAscFile	/logs/lastquery.asc				
InterFileBasePath	C:/inetpub/mascot/data				

MaxVarMods	15
SearchSubmitAcceptedFileTypes	Mascot generic,mzML (.mzML)
SearchSubmitDefaultPeptideCharge	2+, 3+ and 4+
SearchSubmitOutputFormat	msr
AlwaysCreateDat28ResultsFile	1
ClientResultFileMimeRefining	1
	Add New Option APPLY

Configuration Options で初期表示されている/いない に関係なく、MASCOT Server で使用可能な オプションがあります。詳細は別紙の日本語資料資料

URL: (資料未完成、完成後公開いたします)

または、**MASCOT の Setup & Installation manual** (Home 画面にあるリンクで開く事ができる PDF ファイル、英語)の **6 章、「Options」**の項目をご覧ください。

13-11. Database manager

MASCOT で使用しているデータベースに関する設定を行う画面です。Home -> Configuration Editor -> **Database Manager** で開く事ができます。

Database Manager Databases (4)	Databases	and	spec	tral	librarie	es	
Parse rules (10)	Name	Mode ?		Status			Latest task
Scheduled updates	7proteinsForManual	custom	AA	In use		Deactivate	
Running tasks (0)	PRIDE_Contaminants	predefined	SL	In use	Get new files	Deactivate	Update ended in error (view log)
Settings	SwissProt	predefined	AA	In use	Get new files	Deactivate	Update succeeded (view log)
Fasta	UP5640_H_sapiens	predefined	AA	In use	Get new files	Deactivate	Update succeeded (view log)
Enable predefined definition	Latest predefined definitions files are from Sat Feb 13 01:06:10 2021 (FASTA databases: databases_20210212T160610.xml) and Wed Jan 20 22:15:37 2021 (spectral libraries: libraries_20210120T131537.xml).						
Synchronise custom definitions							
Create new	Full database status is available on the database status page.						

Database manager については別紙の設定資料を準備しておりますのでそちらをご覧ください。 <u>https://www.matrixscience.co.jp/supportpdf/MASCOTServer_ver26_sequencedbmanage.pdf</u>

13-12. Security

セキュリティ機能に関する設定を行う画面です。MASCOT Server で Security 機能を ON にしている時 のみ、Home -> Configuration Editor -> **Security** で開く事ができます。

Mascot Security Ad	Iministration	Logged in a	as Administrator Logout			
Users guest admin daemon v Add Delete Edit	e	Groups Guests Administrators PowerUsers Daemons Edit				
Options						
Option V	alue C	ption Value				
Security enabled	2 V	erify IP address 🔲				
Session timeout 2	21600 L	ogging level 3				
Default password expiry 3	365					
Minimum password length 5	5					
Use session cookies]					
Save options						
Help window. Use this configuration application to add/delete/edit users and groups. For further help on any input parameter, hold the mouse over the blue text.						

セキュリティ機能については別紙の設定資料を準備しておりますのでそちらをご覧ください。 <u>https://www.matrixscience.co.jp/supportpdf/Security.pdf</u>

技術サポート

ご質問等ありましたら弊社技術サポートにご連絡ください。 電子メール :support-jp@matrixscience.com 電 話 :03-5807-7895

