

最終更新日:2021/12/08

Proteome Software

(h

暫定版

タンパク質同定結果検証・整理 ソフトウェア

Scaffold 5

目次

1.はじめに
1-1. Scaffold とは1
1-2. Scaffold でのデータ読み込み1
1-3. Scaffold で採用されているアルゴリズム2
2. データの読み込み
2-1. 概要、データの階層構造4
2-2. MASCOT 結果ファイルを直接指定し読み込む方法6
2-2-1. dat ファイルの読み込み: validation は Scaffold 上で行う方法
2-2-2. mzIdentML 読み込み: validation は取り込み前に行う方法
2-3. MASCOT Server からネットワークを介して dat を取得する方法
2-4. raw またはピークリストを直接読み込むところから始める方法
2-4-1. 実行する検索エンジンプログラムをセットする:X! Tandem の場合
2-4-2. 実行する検索エンジンプログラムをセットする : MSFragger の場合
2-4-3. MSFragger または X!Tandem での検索実施とデータ読み込み方法
2-5. 配列データベースの登録
2-5-1. 概要
2-5-2. Edit FASTA Databases ダイアログ37
2-5-3. FASTA データベースの登録方法
2-5-4. parse rule について(Configure Database Parser)40
3. Samples View40
3-1. 概要
3-2 . Samples View 画面·表示内容41
3-2-1. Display pane: Samples table で表示する数値の設定42
3-2-2. Filtering Samples: 表示たんぱく質/ ペプチドの絞り込み
3-2-3. The Samples Table: 同定タンパク質に関する情報の表示47
3-2-4. Information Panes:タンパク質・サンプルに関する追加情報
3-3 . FDR ダッシュボード・オプションインジケーターランプ50
3-4 . Probability の凡例51
4. Menuの各項目について52
4-1. menu の内容 説明
4-2. ファイル保存方法・ファイルを開く方法56
4-3. sf3 ファイルの統合 (File ->merge)57
4-4. sf3 ファイルのデータサイズを削減する方法58
4-5. GO の設定
4-5-1. GOA ファイルのセット

4-5-2. 表示する GO 情報の設定	62
4-6. Preferences の設定内容	66
4-7. Advanced Preferences の設定内容	68
4-8. Pathway に関する設定	69
4-8-1. Wikipathways,Reactome と使用時のタンパク質 ID について	69
4-8-2. Pathway 情報の表示 [Scaffold 上]	69
4-8-3. Pathway 情報の表示 [外部サイト]	74
4-9 . ツールバーアイコン	76
5. Load Data View	77
5-1.	
5-2. Experiment pane	
5-3. BioSample tab < Load and Analyze Queue button	
5-4. Information pane	80
6. Protein View	81
6-1. 概要	81
6-2. Proteins pane : タンパク質に関する情報を表示	82
6-3. Peptide pane : ペプチドに関する情報を表示	83
6-4. Spectrum pane :タンパク質/スペクトル 関連図	86
6-4-1. Protein Sequence tab	86
6-4-2. Similar Proteins tab	87
6-4-3. Spectrum tab	87
6-4-4. Spectrum/Model error tab	88
6-4-5. Fragment table tab	
7. Grouping,Clustering と Similarity View	<mark>89</mark>
	89
7-2. 表示内容の詳細: summary 画面	
7-2-1. Protein Grouping (same-set)	
7-2-2.Protein Pairing(sub-set)	
7-2-3.Protein Clustering (Family Proteins)	
7-3. Legacy Protein grouping	95
7-4. Samples View と Similarity View との関連について	
7-5. Similarity View 概要	99
8. Quantify View	
8 1 Onentify View, 定景指標を其にしたグラフや co べい図を主子	100
o-1. Quality view: た里田宗で至にしたノラファ GO,ハフ凶で衣小	
8-2. Quantify Southernlate name	
8-3-1. Scatterplot タブ	103
~~~~~~ ,	

8-3-2.Stdev Scatterplot タブ	
8-3-3.Volcano plot タブ	106
8-4. Venn Diagrams pane	
8-5. Annotation Charts pane	107
9. Publish View	109
9-1. Publish View : Method の文章化	109
10. Statistics View	111
10-1.Statistics View 概要 : 同定確率計算に使用したスコア分布などを表示	111
10-2. MS Sample table	112
10-3. Statistics View Upper Right Pane	113
10-3-1. FDR Browser タブ	113
10-3-2. Peptide ROC Plots	115
10-3-3. Protein Probability Calculation タブ	116
10-4. Multiple Search Engine Scatter Plot pane	117
10-5. Peptides Validation pane	117
11. 定量手法と検定	118
11-1. 概要	118
11-2. ラベルフリーの定量方法	118
11-2-1. Spectral Counting	119
11-2-2. Total Ion Count	
11-2-3. Precursor Ion Intensity quantitation	
11-3. Normalization について	121
11-4. 検定	122





# 1.はじめに

# 1-1. Scaffoldとは

Scaffold は、DDA プロテオミクスのデータをまとめ、サンプル間での比較を主な目的としたソフトウェアです。

複数の検索エンジンの結果ファイルを取り込むことが可能なほか、いくつかのフリーな検索を使って raw データ(またはピークリストファイル)から検索を行い、結果を表示させることも可能です。

取り込んだ同定ペプチドについて、Percolatorを中心としたValidation用のプログラムを適用する事ができます。

取り込んだ結果について、EXCEL などでまとめた状態とは異なりスペクトルとアサインされたペプチド の理論フラグメントピークとのマッチング状況を確認する事もできます。また Gene Ontology 情報の表示 や Pathway データベースへのリンク、サンプル間の同定タンパク質比較といった、タンパク質の解析を補助 する機能もついています。

検索結果については Excel スプレッドシート、mzIdentML, などに出力できるほか、Scaffold 関連製品 で取り扱う事ができる SFDB ファイル、BLIB ファイルを出力する事ができます。

結果についてはファイルに保存し、Scaffold ライセンスを所有していない共同研究先でもフリーの Viewer を使って結果を閲覧する事が可能です。

### 1-2. Scaffold でのデータ読み込み

Scaffold のデータ取り込みには大きく分けて以下の2種類があります。

■検索エンジンの結果ファイルを読み込む

■検索前の raw ファイルまたはピークリストファイルを読み込む



また、検索エンジンの結果を取り込む場合でも、改めて X!Tandem や MSFragger での検索も実行して、 両者の結果を組み合わせてペプチドを評価する事も可能です。

データ取り込みについての詳細な説明は2章で行っています。

# 1-3. Scaffold で採用されているアルゴリズム

Scaffold では、ペプチド並びにタンパク質同定の信頼性を上げるため、以下のアルゴリズムを適用する 事ができます。

- Percolator
- LFDR-based scoring system
- Peptide Prophet
- Protein Prophet

各アルゴリズムについて、少し詳しく説明します。

#### Percolator

取り込んだデータのペプチド-スペクトルの再評価を行うと同時に、Validation も行います。スコア だけでなく質量精度や各種情報をもとに判断します。同定スペクトルを増やす目的で、現在 幅開く利用 されています。

#### 論文:

Lukas Käll, Jesse Canterbury, Jason Weston, William Stafford Noble and Michael J. MacCoss. Semi-supervised learning for peptide identification from shotgun proteomics datasets Nature Methods 4:923 – 925, November 2007

#### LFDR-based scoring system

ベイズ統計の考えに基づいており、ナイーブベイズ分類器を使った判別スコアリングを使ってペプチド 同定の検証が行われています。トレーニングデータセットの選別を繰り返し変更しながら判別スコアリン グの最適化を実施しています。計算により local FDR(LFDR)を算出しその数値がそのままスコア化 されています。トレーニングデータの選別は繰り返し複数回行われ、10ある分類器のうち3つずつを対象 として鍛えていきます。この繰り返し操作により誤って同定されているデータの影響が薄まり判別の正確 性が増します。

他の(Percolator など)スコアリング手法同様、LFDR も他の検索エンジンが提供するスコアを取り 込みます。Peptide Prophet でいう LDA や Percolator でいう SVM(Support Vector Machine)の 分類器にあたるものとして、LFDR ではナイーブベイズ分類器から算出した対数尤度比を使って True Positive と False Positive ヒットの区別を判定しています。識別子の最適化にあたっては過剰適合 (overfitting)による汎化不足とならないよう工夫しています。前駆体イオン(親イオン)の誤差は判別 スコア計算に考慮される要素の1つというだけでなく、別の観点からもスコアに影響を与えています。 Scaffold ではこのスコアについて離散型の(数え上げ方の)スコア分布でなく、より連続的なスコア分布 の関数に置き換えて計算し、確率の積算を行う際にも積分計算を行っています。

#### 論文:

https://dx.doi.org/10.1021%2Facs.jproteome.5b00536

#### Peptide Prophet

Peptide Prophet は検索エンジンによって算出された各ペプチドのスコアの分布を連続的な曲線の 分布に変換し、同定確率を算出するために利用します。分布の変換の際には検索に利用したデータベー スのサイズや検索データの特徴を利用します。この曲線化されたスコア分布を使って各スコアでの同定 確率を再計算します。同定確率はそのままペプチド同定の基準にも適用されます。

#### 論文:

Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold R., Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem., 2002, 74 (20), pp 5383–5392 DOI: 10.1021/ac025747h

#### Protein Prophet

Protein ProphetはPeptide Prophet で算出された各ペプチドの同定確率をもとに、アサインされて いるタンパク質の同定確率を算出するアルゴリズムです。Scaffold 5 ではそのアルゴリズムをさらに 調整し、シェアペプチドかオリジナルペプチドかによって計算における貢献度を変更しています。

#### 論文

Nesvizhskii, A. I., Keller, A., Kolker, E., Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry.

Anal. Chem., 2003, 75 (17), pp 4646-4658 DOI: 10.1021/ac0341261

Scaffold では取り込んだデータに対して、上記の各手法のうちいずれかの方法が適用され評価され ます。一方 Scaffold で準備されているアルゴリズムを使わず、各検索エンジンで検証の上出力された 結果をそのまま取り込む方法があります。Scaffold ではこれを「Prefiltered Mode」での取り込みと 呼んでいます。データの取り込み方に関する詳細は、「**2-2-2.** Prefiltered Mode で検証済みの mzIdentML ファイルを Scaffold 上の検証なしに読みこむ」をご覧ください。

2. データの読み込み

## 2-1. 概要、データの階層構造

Scaffold でデータを読み込むには大きく分けて以下の3つの方法があります。

結果取り込みの方法	項目	お勧めのケース
MASCOT の検索結果ファイル(dat ファイ		・Scaffold と MASCOT がネットワークで
ル、又は mzIdentML ファイル)を	2.2	つながってない場合
Scaffold PC にコピーしてから Scaffold	4-4	・Scaffold の validation 手法を適用しない、
上でファイルを取り込む		「Prefiltered Mode」を適用したい場合
Mascot Server のログファイルを		・ネットワークがつながっていて Scaffold の
Scaffold 内で開き、該当結果を選択して	2-3	validation 手法を利用する場合
ネットワーク経由で取り込む		
raw またはピークリストファイルを直接読		・X!Tandem または MSFragger での検索から
み込み、X! Tandem または MSFragger	2-4	実行したい時
で検索してその結果を取り込む		

加えて、各結果ファイルにはタンパク質の ID (Accession) 情報のみ含まれ、アミノ酸配列情報が含まれ ていません。Scaffold で各タンパク質のアミノ酸配列情報を見るためには、検索に使用したデータベース ファイルを Scaffold 上にも取り込む必要があります。MASCOT の検索結果を取り込む際、該当データ ベースファイルからアミノ酸配列を取得し直し、Scaffold 内の表示に反映させています。2-5 ではデータベ ースファイルの登録方法についてご案内します。



データ取り込みの際に重要な概念として、「Category」「Sample」「dat (その他取り込み可能なテキスト /XML ファイル)」の階層構造について説明いたします。

複数の dat をまとめたものが Sample、さらに複数の Sample をまとめたものが Category です。階 層構造はデータ取り込み時に定義します。



dat をまとめて表示するかどうかについては、結果表示画面「Samples」の上部にある、 「**BIO**」ボタン/「**MS**」ボタンで切り替えることができます。dat をすべて表示させる形式が「**MS**」です。



一方「BIO」ボタンを押すと sample 以下にある dat がすべてまとめられた表示がされます。



Scaffold でデータを取り込む際、途中でどのように取り込むのか選択する画面が現れます。以下図では 画面内の選択肢と、この章で説明する内容の対応付けをしています。



# 2-2. MASCOT 結果ファイルを直接指定し読み込む方法

MASCOT の結果を Scaffold に取り込む 2 つの方法のうちの1つ、MASCOT の検索結果ファイルを Scaffold で直接指定して読み込む方法についてご案内します。2-2-1 では、MASCOT の結果ファイル dat の取り込みを紹介しています。取り込みたい MASCOT の結果が、どういう名称でどこにあるファイル なのか事前に確認をした上で、該当する dat ファイルを Scaffold がインストールされている PC にコピー する必要があります。また 2-2-2 では、mzIdentML ファイルの取り込みについてご案内します。例えば MASCOT において、FDR が 1%など特定の数値となるよう定めたペプチド同定基準を Scaffold 上に おいても適用したい場合、結果画面から mzIdentML ファイルにて出力し、Scaffold で prefiltered mode で出力時の状態から Validation をすることなく結果として取り込む事が可能です。

#### 2-2-1. dat ファイルの読み込み: validation は Scaffold 上で行う方法

[MASCOT Server 上の dat ファイルの場所を確認する方法]



<b>I</b>	Concise Sumr	nary Report (/	dat × Mascot Search	Log × +			URL 確認	
$\leftarrow \rightarrow$	C ŵ	(	localhost/masco	:/x-cgi/ms-review.exe		WEBブラ	ウザ-Search I	og の場合
MAS	COT se	earch l	og		l			
Vo <del>rsion</del> Sort / filte	: 2.7.0 - I er log File GETs	MSKK (D6F e:/logs/sea ?: 🗆	RQ-7VGN-88XU-9Y arches.log Start at	VD-MLUB) :: (-1=end, 1=start) -:	how many:	50 86 in log, 86 a	after filters. Data dir:	
Job#	PID	dbase	User Name	Email	Ti (	In start time	Durati	
	0	0	0	0	0		0	
1 の別	例 A.	Searc	h log 結果	一覧から dat	ファイルの	場所を確認す	る方法。	
もあり	ります。	,表示	項目の中で	「In」と書かれ	1ている項	目のチェック	゚゚ボック ₄	
スにチ	ニック	クを入	れ、左側の	「Sort / Filter	·」 ボタン [:]	を押すと・・	• 5 •	

N.	Concise Sum	mary Report (/d	at X Mascot SearchLog	× +				- 🗆 ×
$\leftarrow \rightarrow$	C @	0	localhost/mascot/x-cgi/m	ns-review.exe?Call	edFromForm=1&lc	ogfile	=%2Flogs%2Fsearches.lc 🏠	$\bigtriangledown$ II $\equiv$
MAS	COT se	earch lo	og					^
Versior	n: 2.7.0 - I	MSKK (D6R	Q-7VGN-88XU-9YVD-MLI	UB)				
Sort / filt	er Log Fil GETs	e:/logs/sear ?: 🗆	rches.log Start at: (-1=	end, 1=start)	-1 how m	any:	50 86 in log, 86 after f	filters. Data dir:
Job#	PID	dbase	User Name	Email	٦	Ti	Intermediate file	start time
0	0	0	0	0		0	0	0
<u>1332</u>	3016	SwissPro	takaesu		(	$\langle$	<u>/data/20211015</u> /F001332.dat	Fri Oct 15 12:4
<u>1331</u>	8980	SwissPro	takaesu				<u>/data/20211015</u> /F001331.dat	Fri Oct 15 12:4
<u>1330</u>	7692	SwissPro	takaesu		ファイルカ	が置	むかれている相対 pa	uth とファイル
					名が表示	t≀	1ます	



### [dat ファイルを指定して読み込む方法]

以下操作方法についてご案内します。定義するデータですが、Category として Control と Treatment, それぞれに Sample を2種類属した計4つのデータの取り込みを想定しています。

Category	Sample	dat
Control	Sample1	F001234.dat
	Sample2	F001235.dat
Treatment	Sample3	F001236.dat
	Sample4	F001237.dat

#### [Control, Sample1 の指定]





Scaffold Wizard	×
<ol> <li>Welcome to Wizard</li> <li>Select Quantitative Technique</li> <li>New BioSample</li> <li>Queue Files For Loading         <ul> <li>Queue Files For Loading</li> <li>Queue More Files</li> <li>Add Another BioSample?</li> <li>Load and Analyze Data</li> </ul> </li> </ol>	Queue Files For Loading         BioSample: Sample1         Standard sample: each file will be analyzed separately         If you wish to add more files to this BioSample, press a "Queue More" button below.         If you are done adding files, press "Next" to continue.         Image: Queue More Search Engine Results For Loading For This BioSample         Image: Queue More Raw Data For Loading For This BioSample         Image: Queue More Raw Data For Loading For This BioSample         Image: Queue More Files From MASCOT Server
	6. 同サンプルとして読み込む結果ファイルが更にないか問われます。ない場合は画面下の 「Next」ボタンを押します。
🕐 Help	



#### [Control, Sample2の指定]



# [Treatmnt, Sample3 の指定]

	Sc.	affold Wizar	d										×		
	1. Welco 2. Selec 3. New 4. Queu	ome to Wizaro t Quantitativ BioSample e Files For L Another Bi	d e Technic oading	que	Add Anoth You can create their data (whic	er BioSa several Bio ch can be a	mple? Samples slow pro	) s and put poess).	files into their	loading que	eues before	loading an	nd analyzing		
	5. Add 6. Load	Another Bi and Analyze	oSample Data	,?	Click "Add and Click "Next" to	ther BioSam load and an	ple″to nalyze yo	loop back our data.	to the beginn	ing of this V	Wizard and c	reate a ne	ew BioSampl	e.	
				$\subseteq$	Add Ano	ther BioSam	ple								
							9.	7 同	様、先程	の指定	とは別	のサン	ンプルと	こして	
		Scaffold Wi	zard				読。	み込む	結果ファ	マイルカ	ないカ	、問われ	れます。	ある	
	1. V	Velcome to Wa	ard		Select Qua	antitative	場合	合は「	Add Ar	nothei	r BioS	Samp	le」ボタ	ルンを	
	2.3 3.0 4.4	Select Guan Queue Files Fo Add Another B oad and Analy	r Loading ioSample? e Data	echnique	Choose Quantit	tative Techni Counting (Sta	クリ	トックし	します。						
	0.1		20 2013		) itraq (4-	plex)									
					Scaffold Wi	izard									×
					1. Welcome to Wa 2. Select Quantita 3. New BioSam	zard ative Technique nle	1	Vew Bio	Sample	under Q					
					4. Queue Files Fo 5. Add Another E	or Loading NoSample?		Sample Cate	gory. Treatm	ent	ノ				~
					to, Load and Analy	yze Llata	s	Sample Desc	ription:						
									□ Mu (Co	DPIT Experime ombine Samples	ent s)				
Scaf	fold Wizard	I	Queue E	Slee For Le	ading	10.C	れま	で同村	羕、取りえ	込み操	乍を繰	り返し	,ます。 -	今度に	t
2. Select 3. New Bi 4. Queue	Quantitative oSample Files For	Technique	Select files	to add to this l	BioSample. You will I	Cate	gory	/ 名と	< Sam	ole 名	を変え	と る 事	と、先に	まどと	_
- Que 5. Add An 6. Load ai	ue More File nother BioSa nd Analyze (	is mple? Data	not load an	nd analyze the f	iles (which can be tin	異なる	dat	tファ	イルを選	択する	事に注	意して	こくださ	t۱。	
					<b>X</b>			t I							
			Queu	e Search Engin	e Results For Loading	gueu:	e Files Fro	m MASCOT S	Server						_
				ı.	ılı.	Market Select Dat	ta Files [): 🚺 Soa	affoldsample					v 🦸 📂 🖽 •	×	
				Queue Raw Da	ata For Loading	Θ.	F001	234.dat							
						最近使った	<ul> <li>F001</li> <li>F001</li> <li>F001</li> </ul>	235.dat 236.dat 237.dat							
		Scaffold Wizard				,≓⊐,/1bu=1		×							
		1. Welcome to Wizard 2. Select Quantitative 3. New BioSample	Technique	Queue Files F	or Loading										
		<ol> <li>Queue Files For Los – Queue More Fil 5. Add Another BioSan 6. Load and Analyze D         </li> </ol>	iding les φle? ita	Standard sample: )	en each file will be analyzed sepa nore files to this BioSample, pr	irately ess a "Queue More" bi	utton below.								Der
				If you are done add	ing files, press "Next" to contin Search Engine Results For Li	ue. oading For This BioSam	ple								
				🗽 Queue More	Raw Data For Loading For T	his BloSample			001236.dat				Add to Impo	ort Queue	
<b>⊘</b> <u>H</u> ≋	lp								ata Files			$\sim$	取注	Ä	
		Ielp 🕑				<u>Previous</u> <u>N</u> ext	:▶ <u>D</u> or	ne <u>C</u> ancel							

### [Treatment, Sample4の指定]

これまで同様取り込み操作を繰り返します。

_			
	Scaffold Wizard	×	
1. W 2. Se 3. N 4. G 5. A 6. L	bloome to Watand bloot Guarittative Technique even EloSample usus Files For Loading del Another EloSample? ad and Analyce Data	Add Another BioSample? You can create several BioSamples and put files into their loading queues before loading and analyzing their data (which can be a slow process). Click "Add another BioSample" to loop back to the beginning of this Wizard and create a new BioSample. Click "Next" to load and analyze your data. Add Another BioSample	
	11.す/ したら せず「N	ヾてのdat,sample,Categoryの取り込み; 、「Add Another BioSample」ボタンをク Next」ボタンを押します。	が終了 パック
	2 Holo		



以上で dat のデータ取り込みは終了です。

2-2-2. mzIdentML 読み込み: validation は取り込み前に行う方法

#### [mzIdentML 並びに MGF ファイルの準備]

Scaffold で取り込みたい結果について、**MASCOT の結果画面**にて、「Export」の As 右側の選択肢 を「**mzIdentML**」に変更し、「**Export**」ボタンを押します。



ファイル出力時の条件設定を行う画面に移行します。「Target FDR」などの数値を 1%など適切な 値に変更し、画面下部の「Export search results」ボタンを押します。

Mascot search engine   P × Matrix Science -	Mascot ×		H — 🗆	×	
← → C () localhost/mascot/cgi/export_dat_	2.pl?group_family=1	1&_showsubsets=1&fi	le=%2Fdata% 🛠 🗵	:	
Home Access Mascot Server Database sear	h help Contact			<b>A</b>	
Mascot database search > Access Mascot Server > Export	search results		<mark>2.</mark> FDR の数	直を適切な値に変更し、	
Export search results			「Export Sea	arch results」	
Export format	mzldentML •	•			
Significance threshold n<	0.05 at 🤇	identity  homolog	У		
Target FDR	1%			Щ п	~
threshold if set)	170 1	Mascot search engir	ne   P 🗙 🗽 Matrix Science	- Mascot · ×	~
FDR type	Distinct PSMs	- → C 🛈 local	nost/mascot/cgi/export_dat	t_2.pl?group_family=1&_sho 😭 🗾	:
Display non-significant matches					•
Max. number of hits	AUTO	Ouery Level Ir	formation		
Include same-set protein hits	-Standard C	<b>C 7</b>	Matala d Francisco Tar		
(additional proteins that span the same set of pentides)			Export data for all Querie		
Include sub-set protein hits			Export data for an Querte		
(additional proteins that span a sub-set of peptides)	1	Show command lin	e arguments	Export search results	
	-				

遷移した画面で「Download」ボタンを押します。出力されるファイルは、「**F(search 番号).mzid** 」という 名称のファイルとなり、ブラウザの既定のダウンロードフォルダなどに保存されます。

この mzIdentML ファイルの作成を、Scaffold にて取り込みたい結果で繰り返し行います*1。

*1 Mascot Daemon にて、検索実行と連動して自動的に mzIdentML ファイルを作成するオプションが準備されています。



この mzid ファイルには各 query のピーク情報が含まれていません。mzid と同じフォルダ上にピークリスト ファイルである MGF ファイルを出力しておいておく必要があります。MGF の出力も結果画面の Export か ら可能です。

結果画面の Export format で「MGF Peak List」を選択すると、画面が遷移します。

Export search results	Help
Export format MGF Peak List	
Significance threshold p< $0.05$ at Oidentity $\odot$ homology	
Display non-significant matches	
Max. number of hits AUTO	
Min. number of sig. unique sequences $1 \checkmark$	

画面下の「Export search results」ボタンを押すと MGF ファイルがダウンロードされます。

Export search results	Help
Export format	MGF Peak List 🗸
Output spectra in	<ul> <li>original order (for use with mzIdentML or mzTab)</li> <li>Mascot query order</li> </ul>
Show command line arguments	Export search results

すべての mzid ファイルを準備したら、Scaffold を起動しデータの取り込みを開始します。手順は以下の通りです。



■ Scaffold Wizard 1. Welcome to Wizard 2. Select Quantitative Technique 3. New BioSample 4. Queue Search Engine Results For Loading をクリックします。
<ul> <li>- Queue More Files</li> <li>5. Add Another BioSample?</li> <li>6. Load and Analyze Data</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) until you are finished adding files.</li> <li>intervention of the files (which can be time consuming) untilyou are files (which can be tinded) (which can be tinded) (wh</li></ul>
Select Data Files X
ファイルの場所(1): 👔 mzIDentML 🗸 🗸 🎓 📰 •
最近使た… 日本の1273.mzid F001273.mzid F001275.mzid F001275.mzid F001275.mzid F001276.mzid F0012
5. 読み込む mzIdentML ファイルを選択します。
14X2E#1
PC Done Cancel
マティル名(M):         FO01273 meld         Add to Import Queue           ネットワーク         ファイルのタイプ(I):         Data Files         取消
<ul> <li>Scaffold Wizard ×</li> <li>Welcome to Wzard Select Quantitative Technique</li> <li>New BoSample</li> <li>Gueue Files For Loading</li> <li>Deueu More Files</li> <li>Add Archter BioSample?</li> <li>Load and Analyze Data</li> <li>Wore Raw Data For Loading For This BioSample</li> <li>Queue More Raw Data For Loading For This BioSample</li> <li>Queue More Files From MASCOT Server</li> <li>6. 同サンプルとして読み込む結果ファイルが更 にないか問われます。ない場合は画面下の</li> </ul>
「Next」ボタンを押します。



Scaffold Wizard		×	
Welcome to Wizard     Select Quantitative Technique     Sow Bosample     Queue Files For Loading     S. Add Another BioSample?     Load and Analyze Data	Add Another BioSample? You can create several BioSamples: their data (which can be a slow proc Click "Add another BioSample" to lo Click "Next" to load and analyze you	and put files into their loading queues before loading and analyzing zes). op back to the beginning of this Wizard and create a new BioSample. r data.	
		9.すべての dat,sample,Ca したら、「Add Another Bid せず「Next」ボタンを押します	ategory の取り込みが終了 oSample」ボタンをクリック 。
🕗 Help		Previous Next      Qone Qancel	

Scaffold Wizard		10 検索で利田したデータベーフ
1. Select Quantitative Technique 2. New BioSample 3. Queue Files For Loading 4. Add Another BioSample? <b>5. Load and Analyze Data</b>	Load and Analyze Data Searched Database(s): 1. SwissProt_2021_03 FA	TA Database 〜
<ul> <li>11. X! Tandem(または MSFragger)で検索を 追加で行うか、指定します。</li> <li>(これらの検索エンジンを実 行可能な場合のみ)</li> </ul>	X! Tandem Analyze with X! Tandem Scoring System O Use Percolator	Edit Databases <b>12.</b> Scoring(Validation 含む)方法 を指定します。検索エンジン側で調整した 結果をそのまま取り込む場合、「Use prefiltered mode」を選択します。
13. タンパク質のグルー プ化表示の有無を指定し ます。	Other      Protein Grouping      Use protein cluster analysis      Use standard eventiment wide to	æarch engine probabilities, e.g. from Percolator, when available)
14. Gene Ontology や Pathway アノテーション	Optional Loading Steps Precompute FDR thresholds Annotate proteins Choose	protein grouping <b>15.</b> すべてのパラメータを選択 後、"Load Data"ボタンを押 すと取り込みが開始します。
の有無を指定します。 2 ២		Previous     Load Data     Dore     Qancel

以上で mzIdentML の取り込みは終了です。

# 2-3. MASCOT Server からネットワークを介して dat を取得する方法

MASCOT の結果を Scaffold に取り込む 2 つの方法のうちの1つ、MASCOT のログファイルを開き、 Mascot Server からネットワークを通じて直接 dat ファイルを取り込む方法です。

#### [Sample を Search log から指定しネットワーク経由でファイルを取得する方法]

Category として Control と Treatment, それぞれに Sample を2種類属したデータを想定しています。

Category	Sample	dat	
Control	Sample1	F001244.dat	
	Sample2	F001245.dat	
Treatment	Sample3	F001246.dat	
	Sample4	F001247.dat	

#### [Control, Sample1 の指定]

Scaffold Q+S Evaluation - Load Data		– 🗆 X
File Edit View Experiment Export Quant Window He		
Load Data Ctrl+N) 項	▲ S M Protein Threshold 0000 Mn # Peptides 3 ドタンを押し(または Xり込みを開始します	2 Peptide Threshold 95% V
Samples Proteins Similarity Quantify Publish Statistics	Wizard witard witard witard wither Technique For Loading ·BoSample? wiyge Data ·BoSample? with the Technique ·BoSample? ·BoSample? ·BoSample? ·Spectrum Counting (Standard) ·ITRAQ (4-plex) ·ITRAQ (4-plex) ·ITRAQ (4-plex) ·ITRAQ (4-plex) ·ITMT (10-plex) ·TMT (10-plex) ·TMT (10-plex) ·TMT (16-plex) ·TMT (10-plex) ·TMT (10-plex	ique タを含んでいない l Conting(Standard)"を "Next"ボタンを押します。
ealb		

Scaffold Wizard	×
1. Welcome to Wizard	New BioSample
2. Select Quantitative Technique 3. New BioSample	Sample Name: Sample1
4. Glueue Files For Loading 5. Add Another BioSample?	Sample Category: Control
6. Load and Analyze Lata	Sample Description
	└─ (Combine Samples)
	2 Sample Name Catagory の棚を記入します
	5. Sample Name、Calegory の欄を記入しより。
	複数ファイルを取り込みかつ結果を最初から結合し
	1つのファイルのように扱いたい場合、「MuDPIT
	Experiment」にチェックを入れます。
	続いて「NEXL」がタンを押しより。
2 Heln	Province Next Drope Carvel
Cerb	Lieanes Tevr h Fous Zaurei
Scaffold Wizard	×
1. Welcome to Wizard	Queue Files For Loading
2. Select Quantitative Technique 3. New BioSamole	
<ol> <li>Queue Files For Loading         <ul> <li>Queue More Files</li> </ul> </li> </ol>	Select files to add to this BioSample. You will have the opportunity to add more files later. Scaffold will not load and analyze the files (which can be time consuming) until you are finished adding files.
<ol> <li>Add Another BioSample?</li> <li>Load and Analyze Data</li> </ol>	
	Queue Search Engine Results For Loading Queue Files From MASCOT Server
	Queue Ray Data Ear Leading Queue Staustured Directories
	4. Queue Search Engine Results For
	Loading をクリックします。
	4 Devices that he Devices
Teib	Erevious Next ▶ Done Canoel

Queue Files From	MASCOT Serv	er		<b>5.</b> 取り込む結	課をログからクリックで
Mascot Server: http://k Job Number:	ocalhost/mascot Ua	er Name:	Connected to localhost	選びま 9 (向晴   も可能です)。   「Add  ボタン	を押すと下の欄に取り
Job / Database	User Name	Email	· · · · · · · · · · · · · · · · · · ·	込まれた結果	が表示されます。選択を
1244 SvissPro 1245 SwissPro 1245 SwissPro	name name rame	short me short me	Queue Files From MASCO	終えたら「 <b>OK</b> 」	ボタンを押します。
1246 SwissPro 1247 SwissPro	name	short me short me	Job Number:	User Name:	Title:
1248 SwissPro 1249 SwissPro	name name	short me	Job / Database User M 1243 SwissPro name 1245 SwissPro name 1245 SwissPro name 1245 SwissPro name 1246 SwissPro name 1248 SwissPro name 1248 SwissPro name 1248 SwissPro name	Name Email short memo short memo short memo short memo short memo short memo	Title MS/MS Example 20210310 Tutorial Sear 20210310 Tutorial Sear 20210310 Tutorial Sear 20210310 Tutorial Sear 20210310 Tutorial Sear 20210310 Tutorial Sear 20210310 Tutorial Sear v
Download Status	Job Num	Database	<	Add Rem	> ve
<			Download Status Job	Num Database User	Name Email
Logout					
			Logout		Cancel

Scaffold Wizard	×
<ol> <li>Welcome to Wizard</li> <li>Select Quantitative Technique</li> <li>New BioSample</li> <li>Queue Files For Loading         <ul> <li>Queue More Files</li> <li>Add Another BioSample?</li> <li>Load and Analyze Data</li> </ul> </li> </ol>	Queue Files For Loading         BioSample: Sample1         Standard sample: each file will be analyzed separately         If you wish to add more files to this BioSample, press a "Queue More" button below.         If you are done adding files, press "Next" to continue.         Image: Queue More Search Engine Results For Loading For This BioSample         Image: Queue More Raw Data For Loading For This BioSample         Image: Queue More Files From MASCOT Server
	6. 同サンプルとして読み込む結果ファイルが
	していた。 していた。 していた。 していた。 たかのの していた。 たかのの していた。 ない場合は画面下の
	「Next」ホタンを押します。
🕜 Help	Previces Next     Done Qancel

Scaffold Wizard	×
<ol> <li>Welcome to Wizard</li> <li>Select Guantitative Technique</li> <li>New BioSample</li> <li>Queue Files For Loading</li> <li>Add Another BioSample?</li> <li>Load and Analyze Data</li> </ol>	Add Another BioSample? You can create several BioSamples and put files into their loading queues before loading and analyzing their data (which can be a slow process). Click "Add arother BioSample" to loop back to the beginning of this Wizard and create a new BioSample. Click "Next" to load and analyze your data. Add Another BioSample
	7. 先程の指定とは別のサンプルとして読み込む 結果ファイルがないか問われます。ある場合は 「Add Another BioSample」ボタンをクリック します。
Q Help	

# [Control, Sample2の指定]

Scaffold Wizard	>	<
1. Welcome to Wizard 2. Select Quantitative Technique 3. Queue Files For Loading	Select Quantitative Technique	
	Choose Quantitative Technique:	
5. Load and Analyze Data	Spectrum Counting (Standard)	
	O ITRAQ (4-plex)	
	(itrag (8-plex)	
	○ TMT (2-piex)	
	O TMT (6-piex)	
	O TMT (10-plex)	
	O TMT (11-plex)	
	O TMT (16-plex)	
	Stable Isotope Labeling (Multiplex)	
	O Precursor Intensity (Standard)	
<b>•</b>		
🕑 Help		



### [Treatmnt, Sample3の指定]



# [Treatment, Sample4の指定] これまで同様取り込み操作を繰り返します。

	Scaffold Wizard			×	
1.	Welcome to Wizard Select Quantitative Technique	Add Another BioSample?			
3. 4.	New BioSample Queue Files For Loading	You can create several BioSamples and put files their data (which can be a slow process).	into their loading queues before loa	ding and analyzing	
5. 6.	. Add Another BioSample? Load and Analyze Data	Click "Add another BioSample" to loop back to Click "Next" to load and analyze your data.	the beginning of this Wizard and crea	ite a new BioSample.	
		Add Another BioSample			
	11.すべ	てのdat,sample,	Category の	取り込みが終了	
	したら、	Add Another B	lioSample」オ	、タンをクリック	
	せず「Ne	ext」ボタンを押しま	す。		
	O Felb			bre Qancel	
Scaffold Wizard		<u>.</u>		×	
1. Welcome to Wizard	Load and Analyz	ze Data			
2. Select Quantitative Technique					
4. Queue Files For Loading	Searched Database(s):				
5. Add Another BioSample? 6. Load and Analyze Data	1. SwissProt_2021_08 FASTA Database V				
	10		- <i>' ' ' ' ' ' ' ' ' '</i>		
13 XITandom $(\pm t/t)$	-]    2	・ 快糸で利用したつ		Edit Databases	
	`  を打	指定します			
MSFragger)で検索を追	XI Tandem				
加で行うか、指定します	Analyze with XI T	Analyze with X Tandem			
	Scoring Sistem				
	Coning System			O libbor of the	
	Use Percolator			W Help me choose	
	Use PeptidePro	phet scoring (high mass accurat	5y)		
	O Use prefiltered	mode (accept search engine pro	babilities, e.g. from Per	rcolator, when available)	
	Other		<b>14.</b> Scoring (Validation		
			含む)方法を打	治定します	
15. タンパク質のグルー	Protein Grouping				
プ化表示の有無を指定し	O Use protein clust	er analysis			
±+	Use standard exp	periment wide protein grouping			
£ 9	Use legacy indep	endent sample protein grouping	17. G	iene Ontology や	
	_ Optional Loading Ste	ips	Path	way アノテーション	
16. 結果画面表示前に	Precompute FD	R thresholds	の 左 知		
FDRの計算を実施するか	Annotate protei	ns Choose source*** Conf	igure Annot	まで旧たしより	
11年しま9。					
2 ๒ 18. すべて	のパラメータ	を選択後、 <b>"Load</b>	s 🛛 Load Data 🕨	Done Cancel	
Doto"ボク`					

以上で search log からデータ取り込む操作は終了です。

## 2-4. raw またはピークリストを直接読み込むところから始める方法

Scaffold 5 からは、raw データを取り込み、検索エンジン X! Tandem または MSFragger で検索を 行ってその結果を Scaffold 5 上に表示させることができるようになりました。検索機能を利用したい場合、 予め各検索エンジンの実行ファイルの場所を Scaffold 上から指定する設定を行う必要があります。 それぞれのプログラムをご利用の際にはライセンスについてよくご確認いただき、license agreement に 承諾される必要がありますのでご注意ください。また検索エンジンによって読み込み可能なファイル フォーマットが異なりますのでその点もご注意ください。

検索可能なファイルフォーマット

**X! Tandem** : mzXML, MGF, DTA, PKL などのピークリストファイル **MSFragger** : Thermofisher raw データ、Bruker .d ディレクトリ、mzML などの raw ファイル

2-4-1. 実行する検索エンジンプログラムをセットする : X! Tandem の場合

以前までのバージョンと異なり、現バージョンでは X! Tandem がバンドルされていません。利用する ためにはユーザーが X! Tandem をダウンロードして Scaffold と同じコンピューターにインストールする 必要があります。

X! Tandem URL は以下にガイドがあります。 http://www.proteomesoftware.com/search-tools

インストールした X! Tandem を Scaffold で使用するため、以下の操作を行ってください。



### 2-4-2. 実行する検索エンジンプログラムをセットする : MSFragger の場合

MSFragger を利用するためにはユーザーが MSFragger をダウンロードして Scaffold と同じコンピュータ ーにインストールする必要があります。

MSFragger URL は以下にガイドがあります。

http://www.proteomesoftware.com/search-tools

### インストールした MSFragger を Scaffold で使用するため、以下の操作を行ってください。



## 2-4-3. MSFragger または X!Tandem での検索実施とデータ読み込み方法

Scaffold Q+S Evaluation - Load Data							
<u>File Edit View Exp</u>	eriment Export (	Quant Window Help					
= 🛯 🖬 🔘	1. New	ボタンを押し(または	otein Threshold:	99.0%	✓ Min # Peptides:		
14.)	Ctrl+N)	取り込みを開始します					
Load Data							
<b>SSS</b>							
Samples							
Proteins							

Scaffold Wizard		×	1
1 Welcome to Wittend	Salact Quantitative Tec	hnique	
2. Select Quantitative Technique	Choose Quantitative Technique:	nnque	
4. Add Another BioSample? 5. Load and Analyze Data	<ul> <li>Spectrum Counting (Standard)</li> </ul>		
	O iTRAQ (4-plex)		
	O ITRAQ (8-pley)		
		2	<u> </u> 、 ナショレン 十旦
		2. 正里ナータを呂んでい	ハるい场
		合 、 "Spectral Conting(Star	ndard)"を
		│ │選択します。続いて"Next"ボタンを打	甲します。
	○ TMT (16-plex)		
	<ul> <li>Stable Isotope Labeling (Multip</li> </ul>	lex)	
	<ul> <li>Precursor Intensity (Standard)</li> </ul>	1	
A Hain			-
<u>T</u> ob		Text Files	
Scaffold Wizard		×	
1. Welcome to Wizard	New BioSample		
2. Select Quantitative Technique 3. New BioSample	Sample Name: Sample1		
4. Queue Files For Loading 5. Add Another BioSample?	Sample Category: Control		
6. Load and Analyze Data	Sample Description:		
		ceriment	
	(Combine S	Samples)	
		3. Sample Name Category 0.	)欄を記人し
		┃ます。複数ファイルを取り込みかつ結	課を最初か
		ら結合させたい場合、「	
		Experiment」にナエックを入れます	0
		続いて「Next」ボタンを押します。	
🕜 Help			



Scaffold Wizard	×
<ol> <li>Welcome to Wizard</li> <li>Select Quantitative Technique</li> <li>New BioSample</li> <li>Queue Files For Loading         <ul> <li>Queue More Files</li> <li>Add Another BioSample?</li> <li>Load and Analyze Data</li> </ul> </li> </ol>	Queue Files For Loading BioSample: Sample1 Standard sample: each file will be analyzed separately If you wish to add more files to this BioSample, press a "Queue More" button below. If you are done adding files, press "Next" to continue. Cueue More Search Engine Results For Loading For This BioSample Queue More Raw Data For Loading For This BioSample Queue More Files From MASCOT Server 6. 同サンプルとして読み込む結果ファイルカ 再にたいいか問われます。たいせま会はご頭ですの
	「Next」ボタンを押します。
	Erevious     Lext     Done     Qancel
Scaffold Wizard	×
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
<ol> <li>Welcome to Wizard</li> <li>Select Quantitative Technique</li> <li>New BioSample</li> <li>Queue Files For Loading</li> <li>Add Another BioSample?</li> <li>Load and Analyze Data</li> </ol>	Add Another BioSample? You can create several BioSamples and put files into their loading queues before loading and analyzing their data (which can be a slow process). Click "Add another BioSample" to loop back to the beginning of this Wizard and create a new BioSample. Click "Next" to load and analyze your data. Add Another BioSample
	7. 先程の指定とは別のサンプルとして読み込む 結果ファイルがないか問われます。ある場合 「Add Another BioSample」ボタンをクリック します。

Scaffold Wizard		Х
1. Welcome to Wizard	Select Quantitative Technique	
3. Queue Files For Loading	Choose Quantitative Technique:	
<ol> <li>Add Another BioSample?</li> <li>Load and Analyze Data</li> </ol>	Spectrum Counting (Standard)	
	◯ iTRAQ (4plex)	
	◯ ITRAQ (8plex)	
	○ TMT (2-plex)	
	○ TMT (6-plex)	
	O TMT (10-plex)	
	O TMT (11-plex)	
	O TMT (16-plex)	
	O Stable Isotope Labeling (Multiplex)	
	O Precursor Intensity (Standard)	
 8.2~6 の操作を繰	り返します。今度は Sample 名	
指定の際名称を変え		
ファイル(ピークリスト	・ファイル)を選択する事に注意し	
てください。		
2 Help	Previous Next ▶ Done Car	ncel



	■ Scaffold Wizard × 1. Velcome to Wizard × 3. New BoSample 3. Ouce Files For Loading 5. Add Another BioSample? 4. Load and Analyze Data 9. すべての dat,sample,Category の取り込みが終了 したら、「Add Another BioSample」ボタンをクリック せず「Next」ボタンを押します。
	Belp     Bervious Next      Dres Qancel
<ul> <li>Scaffold Wizard</li> <li>Welcome to Wizard</li> <li>Select Quantitative Technique</li> <li>New BioSample</li> <li>Queue Files For Loading</li> <li>Add Another BioSample?</li> <li>Load and Analyze Data</li> </ul> 11. X!Tandem (またに MSFragger)で検索者	× Load and Analyze Data Searched Database(s): 1. SwissProt_2021_03 FASTA Database 10. 検索で利用したデータベース を指定します。 M Tandem
追加で行うか、指定します。	Coring System     O Use Percolator     O Help me choose
13. タンパク質のグルー プ化表示の有無を指定 します。	<ul> <li>Use PeptideProphet scoring (high mass accuracy)</li> <li>Use prefiltered mode (accept search engine probabilities, e.g. from Percolator, when available)</li> <li>Other</li> <li>Protein Grouping</li> <li>Use protein cluster analysis</li> <li>Use standard experiment wide protein grouping</li> <li>Use legacy independent sample protein grouping</li> <li>Use legacy independent sample protein grouping</li> </ul>
14. 結果画面表示前 FDRの計算を実施するた 指定します。	Proofional Loading Steps C Precompute FDR thresholds か Annotate proteins Choose source Configure Anno Annotate proteins Choose source Configure Anno
<ul> <li>2 ๒</li> <li>16. すべて</li> <li>Data"ボタ</li> <li>面に遷移しま</li> </ul>	てのパラメータを選択後、 <b>"Load</b> ンを押すと、検索パラメータ入力画 ます。

# [X! Tandem の場合]

# 以下のように検索を実行する際に与えるパラメータ入力画面が現れます。

Scaffold Wizard  1. Select Quantitative Technique 2. New BioSample 3. Queue Files For Loading 4. Add Another BioSample?  5. Load and Analyze Data - Validation with X! Tandem	Load and Analyze Data   X Tandem Database Options Include only identified proteins Generate decoy proteins Accession Filter	Precursor Tolerance 20      ppm      Fragment Tolerance 20      ppm      Digestion Erzyme SemiTrypsin
	Variable Modifications       Fixed Modifications         Add Extra Fixed Mods:         Modification       Mass       AA         Met->Hsl       -48.00       Peptide C-Te         Met->Hsl       -48.00       Peptide C-Te         Dehydrated       -18.01       Peptide N-Te         Glu->pyro-Glu       -17.03       Peptide N-Te         Aminonia-loss       -17.03       Peptide N-Te         Aminonia-loss       -17.03       Peptide N-Te         Dehydrated       -0.98       Peptide N-Te         Amidated       -0.98       Peptide C-Te         Dehydro       -1.01       C         Deamidated       +0.98       N         Deamidated       +0.98       Q         Label:180(1)       +2.00       Peptide C-Te         Label:180(2)       +4.01       Peptide C-Te         Methyl       +14.02       D         Methyl       +14.02       Peptide C-Te	Add  Remove
	Oxidation         +15.99         H           Oxidation         +15.99         M           Oxidation         +15.99         W           Oxidation         +15.99         W           Cation:Na         +21.98         D           Cation:Na         +21.98         Petride C-Te           Formyl         +27.99         Peptide N-Te           Dioxidation         +31.99         M	すべてのパラメータを選択後、"Load Data"ボタンを押すと、 データ取り込 み並びに検索が実行されます。

## X! Tandem Database Options

Include only identified proteins	: 拡張検索実施のオプションだが、この画面では使用しません。
Generate decoy proteins	: FDR 計算を行うための Decoy データベース作成を行います。
Accession Filter	: 文字列の条件検索で、taxonomy や特定遺伝子のみを対象とする
	時に利用します("_HUMAN"などと利用します)。
Precursor Tolerarnce	: Precursorの測定値と理論値の誤差
Fragment Tolerance	: Fragmentの測定値と理論値の誤差
Digestion Enzyme	: タンパク質配列から理論ペプチドを生成する際の切断パターン。
Modification	: 修飾。Fixed(全アミノ酸置換)と Variable
	(置換する/しない を両方考慮)

# [MSFragger の場合]

以下のように検索を実行する際に与えるパラメータ入力画面が現れます。

ad and Analyze Data /alidation with	Load and A	Analyze D	ata					
ragger	MSFragger Datab	base Options						
	Include only i	dentified proteins						
				Precursor To	lerance	20 🌩 ppm 🕔	1	
Recommended	Generate dec	coy proteins						
a station of the state of the s	Accession Filter			Fragment To	lerance	20 🜩 ppm 🗸	1	
	Accession inter							
				Digestion En:	zyme	Trypsin	$\sim$	
	Variable Modifica	tions Fixed Modif	fications					
	Add Extra Variab	le Mods:			Selecte	d Variable Mods:		
	Modification	Mass	AA		Modifi	cation	Mass	AA
	Met->Hsl	-48.00	Peptide C-Term		Oxidat	ion	+15.99	M
	Met->Hse	-29.99	Peptide C-Term					
	Dehydrated	-18.01	Peptide N-Term					
	Glu->pyro-Glu	-18.01	Peptide N-Term					
	Ammonia-loss	-17.03	Peptide N-Term					
	Gin->pyro-Glu	-17.03	Peptide N-Term					
	Amidated	-0.98	Peptide C-Term					
	Dehydro	-1.01	C					
	Deamidated	+0.98	N	Add				
	Deamidated	+0.98	Q					
	Label: 180(1)	+2.00	Peptide C-Term					
	Label: 180(2)	+4.01	Peptide C-Term					
	Methyl	+14.02	D	A Romovio				
	Methyl	+14.02	E	Remove				
	Methyl	+14.02	Peptide C-Term					
	Oxidation	+15.99	H					
	Oxidation	+15.99	M	-				
	Oxidation	+15.99	W	オベア	ωN	ペーメータン	を選択後	"loa
	Cation:Na	+21.98	D	97.0	0)/		さ送八夜	· LUC
	Cation:Na	+21.98	E	Data"	'ボム	いた畑す	レー ギー	の取り
	Cation:Na	+21.98	Peptide C-Term	Dala	~ >	ノを1490		ノれり
	Formyl	+27.99	Peptide N-Term	ユッザイド	一长	あが 実行-	+ ゎ ± ナ	
	Dioxidation	+31.99	M	0240	に代	糸小天1」	216890	)
	In. 1		B CL NF		-			

# MSFragger Database Options

Include only identified proteins	: 拡張検索実施のオプションだが、この画面では使用しません。
Generate decoy proteins	: FDR 計算を行うための Decoy データベース作成を行います。
Accession Filter	:文字列の条件検索で、taxonomy や特定遺伝子のみを対象とする
	時に利用します("_HUMAN"などと利用します)。
Precursor Tolerarnce	: Precursorの測定値と理論値の誤差
Fragment Tolerance	: Fragmentの測定値と理論値の誤差
Digestion Enzyme	: タンパク質配列から理論ペプチドを生成する際の切断パターン。
Modification	: 修飾。Fixed(全アミノ酸置換)と Variable
	(置換する/しない を両方考慮)

# 2-5. 配列データベースの登録

### 2-5-1. 概要

Scaffold に取り込む結果ファイルには、タンパク質の配列が含まれていません。同定タンパク質の ID(Accession)情報を基に配列情報を取得し紐づけるため、Scaffold 上で検索に利用したものと同じ配列 データベースを取り込む必要があります。また FASTA データベースのセットは Scaffold で検索結果を読み 込んだり検索を実行する前に行ったりする必要があります。Scaffold で取り込んだ FASTA ファイルは "Edit FASTA Databases"ダイアログで管理する事ができます。

FASTA を取り込む際、FASTA 先頭行の中でどの部位が Accession(ユニークな ID)となり、またどの部位 が Description(タンパク質の内容についての説明)にあたるのかを指定する必要がありますが、それを自 動的に行う設定も Scaffold には準備されています。ここでは配列データベースを Scaffold に取り込ませる 方法やその関連事項について説明しています。

### 2-5-2. Edit FASTA Databases ダイアログ

・MenuのEdit -> Edit FASTA Databases

・データ取り込みなど各所必要な時に現れる「Edit Databases」ボタン これら操作によりダイアログが現れます。



「Edit Databases」ダイアログでは登録されているデータベースの一覧、データベースの追加・変更・削除を 行う事ができます。

Edit Databases				×
Database Name		% Decoys		
SwissProt_2021_03 FASTA Database			No decoys	_
Help	Add Database	Fix	Delete	OK

# **2-5-3. FASTA** データベースの登録方法

1.2-5-2 で案内している方法で、「Edit Databases」ダイアログを開きます。

Edit Databases	×
Database Name	% Decoys
SwissProt_2021_03 FASTA Database	No decoys
	<b>2.</b> 「Add Database」ボタンを押します。
Help	Add Database Fix Delete OK

💹 Open FASTA	Database		×	
ファイルの場所( <u>I</u> ):	] current		✓ 🏂 📂	
最近使った… デスクトップ ドキュメント	UP5640_H_sap	piens_20201007.fasta 3. デー 「開く」?	ータベースファイルを選択し、 を押します。	
PC プ7 ネットワーク ファ	マイル名( <u>N</u> ): マイルのタイプ( <u>T</u> ):	UP5640_H_sapiens_20201007.fasta FASTA database files	→ <b>除</b> 、 取消	
Parsing M Select a metho How should w REVERSEIRA Auto Pars	fethod od for parsing yo re identify decoy ANDOM ##   decoy re Use Reg	x our database: /s? / gular Expressions Cancel	4. データベースの ID,Descri に関する抜出ルールを設定し 特にこだわりがないかぎり、「 Parse」を選んでください。	iptior ,ます。 「 <b>Autc</b>
Edit Databases Database Name SwiseProt_2021_03 FA JP5640_H_sapiens_202	STA Database 01007 FASTA Da	tabase	X % Decoys No decoys No decoys	
	<mark>5</mark> データ/ 後、取り込 ます。確認(	ベースの取り込みが開始し まれたデータベースが一覧  後「 <b>OK</b> 」を押してください。	ます。収容 こ表示され	

### 2-5-4. parse rule について(Configure Database Parser)

2-5-3 の parse rule に関する補足説明をいたします。

FASTA の先頭行の情報から、Accession (データベースのユニークな ID)と Description (説明部分の記述)の箇所を認識し、各エントリーデータの特性とします。この時、Accession や Description の部位を認識 するためのルール、文法のようなものが「parse rule」です。「正規表現」と呼ばれるようなルールを使って 定義します。Accession については、結果ファイルに含まれている内容と Scaffold 上で指定した内容が 一致している必要があります。

Parse rule は 2-5-3 でも説明したように、通常は"Auto Parse"を選択すれば問題ありません。しかし 検索エンジン側で使用していた parse rule と、Scaffold auto parse で指定した parse rule が一致して いない場合は調整する必要があります。一致しないと Scaffold で取り込んだのち各タンパク質の配列の 紐づけがうまくいかず、配列や分子量などの表示が正しく行われません。

ご自身で最適な parse rule を指定したい場合、FASTA ファイル設定時の途中、「Parsing Method」 選択時に、「Use Regular Expressions」ボタンを押します(下図)。

Parsing Method	Х
Select a method for parsing your database:	
How should we identify decoys?	
REVERSE RANDOM ## decoy	
Auto Parse Use Regular Expressions Cancel	

Configure Database Parser	Х
Parsed Accession Numbers and Protein Names:	
Name Database Parser: UP5640 H sapiens 20201007 FASTA Database	
Reset File Location: C:¥inetoub¥mascot¥sequence¥UP5640 H sapiens¥current¥UP5640 H sapiens 20201 007 fasta	=
	-
Accession Protein Description Decoy Alternate ID	
GentB16     Mixed lineage kinase domain-like protein GS=Homo sapiers OX=9000.     MLKL.       GentB16     Mixed lineage kinase domain-like protein GS=Homo sapiers OX=9000.     MLKL.       GentB16     Contract Interaction in the protein GS=Homo sapiers OX=9000.     MLKL.       GentB16     Image kinase domain-like protein GS=Homo sapiers OX=9000.     MLKL.       GentB16     Image kinase domain-like protein GS=Homo sapiers OX=9000.     MCAL2       GentB1-2     Isoform 3 of [F=actin]-moreoxygenase MCAL2 OS=Homo sapiers OX=900     MCAL2       GentB51-3     Isoform 3 of [F=actin]-moreoxygenase MCAL2 OS=Homo sapiers OX=900     MCAL2       GentB51-4     Isoform 5 of [F=actin]-moreoxygenase MCAL2 OS=Homo sapiers OX=900     MCAL2       GentB51-5     Isoform 5 of [F=actin]-moreoxygenase MCAL2 OS=Homo sapiers OX=900     MCAL2       GentB51-5     Isoform 5 of [F=actin]-moreoxygenase MCAL2 OS=Homo sapiers OX=900     MCAL2       GentB51-5     Isoform 5 of [F=actin]-moreoxygenase MCAL2 OS=Homo sapiers OX=900     MCAL2       GentB51-5     Isoform 5 of [F=actin]-moreoxygenase MCAL2 OS=Homo sapiers OX=900     MCAL2       GentB51-5     Isoform 5 of [F=actin]-moreoxygenase MCAL2 OS=Homo sapiers OX=900     MCAL2       Ox5800     MCAL2     OX=900     MCAL2       Ox5800     MCAL2     OX=900     MCAL2       Ox5800     CSAG2     Image Say Say Say Say Say S	
UniProt/Swiss-Prot Alt. Accession (UniProtKB) V Accession Number Parse Rule: X(2(2:sp))(2:tr))*([[]*] )*)	
UniProt/Swiss-Prot Alt. Accession (UniProtKB)	=
UniProt/Swiss-Prot (UniProtKB) UniRef/NREF (UniProt) Decoy Protein Parse Rule: REVERSE[RANDOM##/decoy	_
Ensembl (EMBL/EBI) Alternate ID Parse Rule: >*GN=([¥-¥w]+)	
UniProt/Swiss-Prot Comb. Accession (UniProtKB)	
UniProt/Swiss-Prot (UniProtKB old) Generic	
Help Export     Apply Can	œl

# **3. Samples View**

# 3-1. 概要

Scaffold では各種機能を持つ View(画面)があり、左側にそれらの View を切り替えるためのスイッチがあります。

データを取り込み後、最初に表示されるのが「Samples」Viewです。

各サンプル別の同定タンパク質やアサインされたペプチドの数、同定されたタンパク質の Gene Ontology 情報を一覧で表示する画面です。Scaffold のデータ検証は主にこの Samples View で行います。



3 章では **Samples View** について、その見方・使い方を説明いたします。 英文マニュアルの「**Chapter.6 Sample View**」に該当する内容です。

## 3-2 . Samples View 画面·表示内容

Samples view ではサンプル毎に、同定タンパク質/アサインされたペプチドの数/Gene Ontology などの情報を表示しています。以降、表示内容について説明いたします。

### [全体図]

### 下図内の番号(①など)が、以降の説明の小項目 (「3-2-1」など)と連動しています。



以降、各項目について説明をしていきます。

### 3-2-1. Display pane: Samples table で表示する数値の設定

各サンプルの列で表示される数字について、表示内容を切り替えます。主に、同定の確からしさや定量に関 連する数値を評価できる数値を選択する事ができます。

Display Options の選択項目は次頁表の通りです。

項目	説明
Protein Identification Probability	タンパク質の同定確率。タンパク質にアサインされたペプチドの同定
	確率(Peptide prophet) を基に Protein Prophet で計算 されま
	す。
Percent Coverage	タンパク質全長(残基数)に対し、アサインされたペプチドの残基数
	の割合。
Percentage of Total Spectra	サンプル内全スペクトルに対して、タンパク質にアサインされたスペ
	クトルの数の割合。
Exclusive Unique Peptide Count	
Total Unique Peptide Count	
Exclusive Unique Spectrum	
Count	取初: Exclusive が Total
Total Unique Spectrum Count	Unique pentide / Unique spectrum / Spectrum
Exclusive Spectrum Count	Count という形式となっています
Total Spectrum Count	Count 200 Justic a J Colarge
Quantitative Value	Total Spectrum Count を、各サンプルの全同定スペクトル数を元
	に Normalize した指標値。表示内容を別の定量指標に変更可能
	(Experiment -> Quantitative Analysis $\mathcal{O}$ [Use
	Normalization]->「Quantitative Method」)

### 説明補足:

#### ■ Exclusive と Total

・Exclusive は、該当タンパク質(グループ)のみに存在するペプチド/スペクトル。それに対し Total は、 Exclusive に加え他のグループ【類似タンパク質群】でもアサインされているペプチド/スペクトルを加え た数となります。従って、数は

Total  $\geq$  Exclusive となります。

#### Unique peptides / Unique spectra / Spectrum

Scaffold の用語において「Unique」は、他の同定タンパク質と共通してアサインされているペプチドであるかどうかは一切関係ありません。同じ配列にマッチしている複数のスペクトルについて、1つにまとめて1つと数え上げるか、それともばらばらのままで数え上げるかの違いです。3つの項目は次頁のような違いがあります。

### Unique Peptides

タンパク質にアサインされたペプチド数。修飾のあるなしに関わらず、また電荷の相違に関わらず、同一 配列のペプチドは1つとして数えます。

### •Unique Spectra

Unique peptides と似ていますが、修飾が異なる場合や電荷が異なる場合は別のものとして数えます。

#### •Spectrum

同一ペプチド配列として同定されたスペクトルすべてを1つにまとめずバラバラに数えます。

### 従って数は

### 「 Req Mods 」:

特定の修飾基がついているペプチドのみを表示するためのフィルター

#### 「 Search 」:

すべてのタンパク質 / ペプチド データを対象としたキーワード検索で検索条件に該当するタンパク質/ ペプチド のみを表示するためのフィルター。入力欄にキーワードを入れて検索する単純検索のほか、虫眼 鏡アイコンをクリックすると現れる詳細検索画面があります(下図)。

Gonfigure Advanced P	rotein Filter			×					
Search for proteins based on accession number, protein name, peptide sequences (or sub sequences) and spectrum ID names. All searches support regular expressions. For example, you can find possible CaMKII phosphorylation sites by searching for peptides with the "R_[ST]" motif. Please visit <u>this site</u> for more help with forming regular expressions.									
Warning: Searching by spectrum name can be extremely slow. It works best on small data sets.									
Matching All $\sim$ of the text	filters:								
Accession/Protein Name:									
Protein Sequence Motif:									
Identified Peptide Sequence:									
Spectrum Name (SLOW):									
Category Filtering Options									
Present in All $$	tegories:	Absent f	rom t	he Categories:					
🚦 Add Categories		🖸 Add	Cate,	gories					
Quantitative Profile Filtering C	)ptions	Filte	r by:	Significant					
Compared Categories: Hig	h Categories:		Low	(Categories:					
Add Categories	Add Categories		٠	Add Categorie:					
Starred as	🗠 🗋 ★ 🖿	*							
With taxonomy:	~								
With Any $\sim$ of these GO Te	erms:								
😫 Add GO Terms									
🕜 Help	Арр	ly C	lear	Cancel					

3-2-2. Filtering Samples: 表示たんぱく質/ペプチドの絞り込み

1				1		1
Protein Threshold:	99.0%	Min # Peptides:	2	Peptide Threshold:	95%	~
1						1

### [Protein Threshold]

タンパク質の同定確率(Protein Identification Probability)、または Protein FDR による表示 タンパク質の絞込みができます。同定確率は アルゴリズムProtein Prophetにより計算される数値です。 Protein FDR は%の後ろに「FDR」とついている項目(下図)で、decoyデータベースに対する検索を 行った時のみ現れます。(Protein FDRの計算方法は少し特殊です。英文マニュアルをご参照ください)



### [Min # Peptides]

タンパク質にアサインされた同定ペプチド数の最低数値を指定できます。1~5 までの数値を設定 できます。

### [Peptide threshold]

ペプチドの同定確率 (Peptide Identification Probability)または FDRのパーセントによる表示 ペプチドの絞込みができます。数値はアルゴリズム LFDR(local False Discovery Rate)またはPeptide Prophet により計算されます。ここで定義した閾値の基準を上回るペプチドのみが、タンパク質の同定や Display options などで表示されるペプチドの数、Coverage の数値計算に使われます。

同定基準は、予め提示されている選択肢の他、「**Custom**」を選択する事でユーザーが独自に設定をする ことができます。Custom を選択した場合、Protein Threshold の基準は使用できなくなります。

Protein Threshold: 99.0% 👻	Min # Peptides: 2 👻 Peptide Th	reshold:	þ5% <b>→</b>
	-11		0%
Rea Mader No Filter	r Soorchi		20%
	Search:		50%
it. I amondu			80%
ity Legend:			90%
r 95%			95%
to 94%			Custom
to 79%	ىق ت		0.1% FDR
4- 40%	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ł	0.5% FDR
10 49%		We	1.0% FDR
to 19%	in in its in the second s	ılar	2.0% FDR
	es.	l ec	5.0% FDR
	Ŭ	ş	1 20

"Custom"では様々な条件を指定する事ができます。

- Peptide Probability (最初から入っていますがゴミ箱アイコンをクリックして消す事ができます)
- 電荷
- Precursor の誤差
- ペプチドの長さ
- 修飾の種類
- Missed Cleavage数
- 各検索エンジンから得られるパラメータ [スコアなど]

🚰 Configure Peptid	e Threshold	ad Ka da da	×
Name			_
		Name Name can	not be blank
De Peptide	Probability		<u>.</u>
	Allow pe	ptide when its probability is a	it least 0.95 🜩
	🖆 Peptide Rules 🛛 🗙		
2	Charge		
	Modification Filter		
	Number of Enzymatic Termini		
	Parent Mass Tolerance		
	Peptide Length		
	Byonic		
	IdentityE		
	MS-Amanda Proteome Discoverer		
	MS-GF+		
	MaxQuant		
	MyriMatch		
	OMSSA		
	PEAKS Studio		
	Phenyx		
	Protein Pilot		
	Sequest		
	Spectrum Mill		
	X! Tandem		
	ZCore Proteome Discoverer		
	Add Cancel		
		-	
🕜 Help		🕂 Add Peptide Rule	OK Cancel

複数の条件を組み合わせて作成する事も可能です。

### 3-2-3. The Samples Table: 同定タンパク質に関する情報の表示

Samples Tableでは各サンプルで同定されたタンパク質の情報が表示されます。



Samples View での表示は、アイコンの BioSample View / MS Sample View ボタンの切り替えによって内容を変更することができます(下図)。



BioSample View では、予め定義された BioSample 単位にデータがまとめられます。一方 MS Sample View を選ぶと、まとめられていた MS Sample が展開して表示されるようになります(下図)



Ste Edit View Experir	nent Export	Quant Window Help				Sca	ffold Q	+ - Samp	les - tu	itorial_'							
MS/MS Sam selecte	iple View d	<u>م الله 🗢 🛋 الله الع</u>	+ Protein Th	reshold:	99.0%	~ M	in # Pept	ides: 2	Pepti	de Thresh	old:	95%	,				
	Display Optic	Protein Identification Probability	,	✓ Re	eq Mods:	No Filter	~	Search:				Q	]				
		Probability Legend:	1							Bios	ample	1					
Load Data Samples	a the	Over 95% 80% to 94% 50% to 79% 20% to 49% 0% to 19%	ccession Number	olecular Weight	otein Grouping Ambiguity ovine_spot_06	ovine_spot_07	ovine_spot_08	ovine_spot_09 ovine_spot_10	ovine_spot_11	ovine_spot_12	ovine_spot_13	ovine_spot_14	ovine_spot_15	ovine_spot_16	ovine_spot_17 ovine_spot_18	ovine_spot_19	ovine_spot_20
2/0	1	(P19141) Beta crystallin B3 (Beta CRI	BB3_BOV	24 kDa	100%		ا ھ		-	100%	00%	100%	77%	100%	100%	100%	<u>а</u>
Strong .	3	(PX1843) Beta crystallin A3 varia CRI (P02522) Beta crystallin B2 (BP) CRI	BA_BOVI BB2_BOV	25 kDa 23 kDa		_		100%	100%	100%	67%	100%	100%	99%	100%		
Proteins	5 7	(P07318) Beta crystallin B1 CR (P11842) Beta crystallin A4 (Beta CR (P26444) Beta crystallin A2 (Beta CR	BB1_BOV BA4_BOV BA2_BOV	28 kDa 24 kDa 22 kDa		100% 1	00%		-				77%	100%	100%	100%	100%
		I w keratin, 67K type II cytoskeletalCOI	NT   gi   8	65 KDa		50%			73%							100%	

また、表内の各列をクリックすると、その項目での降順/昇順/並び替え解除 にて各列を並び替えるこ とができます。

	1		1	1		-		Die	ogio	I De				_		Cal		. Ca		*****			ħđ.		oula	~ E.	notion	fama	forma	mala	
		Probability Legend:	_			1.1	1.1				UCES	55	1.1	1.1	1		uia		npa	(me	π. 	1			cuia		netion	Tema.	rema	maie	
		over 95%											,																		
		80% to 94%	│									e e														2	. ₹				
		50% to 79%	•	1	anity			atio																	≥	- tivit	ivity activ				
		20% to 49%			- apie		_	ess	ġ			cess		: 4			ξ	<u>a</u>							otivi	a a	tor act				
		0% to 19%	þe	Ŧ	a ₽	lon		, bro			88	proi		mult			lig	gion			rane	e e	ivity		s s	.e 5	cule eula	AIX I			
			Nun	Veig	-idi	dhe	inge	ant of the	ter		-Š	ism.		sti	atris		2	r re		5	le mt	μĚ	act		ulat	unct	n rele		1		
0	1		.u	lar v	am Gro	<u> a</u>	ling	pmer shme	0	ation	lic d	organ	i lo	seto	appar sem	eleto	asm.	ellula	ane	s ondr	- e	i mei	dant		e reg	llar f	iptio	-np	٩	2	
lible	arre	MS/MS View:	89	lect	xoni	log		velo Udel	owth m	ile	itabi	it i	D D D	2 2	iei a	ě.	⁶ 8	trac	- E	cleu cleu	gane		i ă	ndine.	zym z	lect.	Inct	male Insp	nale	<u>e</u>	
Š	15	Identified Proteins (69)	l ∛	Ξ	1 - E	: اقنا	팀 영 :	9 8 8	1 <b>6</b> 1.5	8.	의 힘	E E	비 편 중	i e	815	181	ଳା କା	i≦.∣⊗	Ē	희 김	5	512	등:	<u>اة</u> :	8 8	원 원	비칭 의	fer Ita	Ē	Ĕ	
~	ώ	Alpha-1-antitrypsin pre	A1AT_HUM	. 47 kDa	Homo.	. •						•		•	•			• •		•				• •	•			3	6	4	^
$\mathbf{\nabla}$	1	Actin, cytoplasmic 1	ACTB_HU	42 kDa	★ Homo.		•			•		•			•	•		•		٠	•			•			•	3		7	
~	1	Serum albumin precurso	ALBU_HU	69 kDa	★ Homo.			•		•		•		٠	•			• •					• (	•				15	17	24	
~	1	Alpha-amylase 1 precur	AMY1_HU	58 kDa	★ Homo.							•						•						• •				16	23	20	
~	1	Apolipoprotein A-I prec	APO AT HU.,	. 31 kDa	Homo.			•		•		•			•			• •			•			•	٠			•	2	2	
~	1	Bactericidal/permeabilit	BPIL1 HU	49 kDa	Homo.													0											5	9	
	12	Breast cancer type 2 su	BRCA2 HU.	.384 kDa	\star Homo.			•	•			•		•		•		•		•				• •						1	
	12	Carbonic anhydrase 6 pr.	CAH6 HU	35 kDa	Homo.		•											•						• •				3	3	5	
~		Cathensin D precursor	CATD HI	45 kDa	Homo													• •										5			
	1.0	outliopoint of productor	0	531.0				-		-			-		-	-					_	_		_						-	

### 3-2-4. Information Panes:タンパク質・サンプルに関する追加情報

画面下部には Samples table とは異なる情報を表示する Information Panes があります(下図)。 左から順に、「Protein Information pane」「Annotation pane」「Sample Information pane」から 構成されています。

Protein Information:	Gene Ontology.	Sample Information:
Lookup Accession Number In: NCBI (ie.gi 1351907,ALBU v HBA_SPAEH	establishment of localization     transport     localization     - transport     - transport     - transport     - gas transport	Biological Sample: Sample Category: Sample Description: MS/MS Sample: MS/MS Sample Notes:

#### Protein Information pane

左下の「Protein Information pane」では、選択しているタンパク質について、ファミリー(Scaffold では、 MASCOT でいう subset と sameset に該当する)タンパク質の ID が並んで表示されます (下図)。ま た「Lookup Accession Number In」で接続先のサイトを選択してからボタンを押すと、該当サイトにおけ るエントリー情報をブラウザで表示させることができます。

Proteins at D% Minimum in # Peptides % Decoy FDR ( Spectra at D% Minimum D% Decoy FDR	Protein Information: Lookup Accession Number In: NCBI (ie:gi 1351907,ALBU_BOVIN,P02769) MYG_AOTTR MYG_CALJA MYG_GALCR MYG_HORSE MYG_LAG
in boot y . bit	٩ ١١١

### Annotation pane

真ん中下の「Gene Ontology pane」では、選択しているタンパク質の Gene Ontology 階層構造の情報 が表示されます(下図)。気になる GO に関して選択しダブルクリックすると、Gene Ontologyの用語説明の ページが WEB ブラウザで開きます。

3os Ta		o <b>o</b>	0		100% 100%		
3os Ta	<b>o</b> o o	0	00		100% 100%		
	Gene Ontology:						1_G:
•	<ul> <li>biological regulati</li> <li>regulation of</li> <li>regulation</li> <li>regulation</li> <li>regulation</li> <li>regulation</li> </ul>	on biological process n of localization ation of transport egulation of intracellular to negative regulation of	ransport intracellular tra	nsport		4	Biological S Sample Ca Sample De MS/MS San MS/MS San

### Sample Information pane

画面右下は、Sample に関する情報を表示する「Sample Information pane」です。sample table 内で、 各 sample(Biosample または MS Sample)の列の何かの項目を選択すると、その sample に関する情報 が表示されます(下図)。

	50% 100 100% 100 100% 100	% %		
't llular transport		4	1_G: Biological Sample: Sample Category: Sample Description: MS/MS Sample: MS/MS Sample Notes:	1_G Bovine lens bovine_mudpit_10

# 3-3 . FDR ダッシュボード・オプションインジケーターランプ

画面一番左側の下に、FDR の計算内容に関する表示と、表示に関するオプション で何が選択されているかを一目で判別するインジケーターがついています(右図)。



FDR ダッシュボードには、同定基準を超えるタンパク質数、スペクトル数並びに

それぞれのフィルターリング条件が表示されます。

解析対象の検索が Decoy データベースに対しての検索も行い FDR の計算ができる時、ダッシュボードの 色が赤(下図左)になります。decoy の計算をしていない場合、青色(下図右)となります。

21 Proteins at	7 Proteins at
99.0% Minimum	99.0% Minimum
2 Min # Peptides	2 Min # Peptides
0.0% Decoy FDR	0.0% Prophet FDR
1359 Spectra at	447 Spectra at
95.0% Minimum	95.0% Minimum
0.00% Decoy FDR	0.27% Prophet FDR

FDR ダッシュボードの下にある6つの〇は、表示のオプション選択状況のオン/オフを緑丸/黒丸で表しています(下図)。各丸の内容は左から順に以下の内容です。丸にカーソルを合わせると説明が 表示されます。

- Show less <5% probability
- Show lower Scoring Matches
- Show entire protein Clusters
- Use Protein Cluster Analysis
- Use Independent Sample Grouping strategy
- Scoring Scheme (LFDR:緑, Peptide Prophet Advanced : オレンジ、 Peptide Prophet:黒)



インジケーターの上にカーソルを合わせる事で、選択内容を文字で確認する事ができます。なお上記 リストの上の3項目は、Menuの View にて設定内容を切り替える事が可能です。

# 3-4 . Probability の凡例

MS Sample 並びに BioSample の各セルについている色は、Sample 画面の表左上にあるタンパク質の同定確率(Probability)に基づいています(下図)。タンパク質の同定確率は、Protein Prophet によって 計算された数値です。

	1000	-				1							Rie	-	. 1	- 191	
			Probability Legend:										DI	Joannyi			l
			over 95%			uity											l
			80% to 94%			piqu											l
			50% to 79%	ğ	ギ	g Ar		~				-	N		*	10	l
			20% to 49%	Imp	Veig	-iqi	Ĵ.	Ĵ.	D,	Ĵ,	Ę.	Ţ.	Ę.	Ę.	Ĵ.	Ę.	l
	-	÷	0% to 19%	l G	ar V	5	g,	ĕ,	ĕ,	ď,	₫	ds'	dd,	g	g .	۲, a	l
#	visible?	Starred	MS/MS View: Identified Proteins (7)	Access	Molecul	Protein	povine.	povine.	oovine	povine	povine	oovine.	oovine.	povine.	oovine.	oovine.	
1	-		(P19141) Beta crystallin B3 (Beta (	RBB3_BOV	24 kDa		100%	i T	6 . <del></del> . (				100%	100%	100%	77%	Ì
2	-		(PX1843) Beta crystallin A3 varia	RBA BOVI	25 kDa						100%	100%	100%		77%		
3	~		(P02522) Beta crystallin B2 (BP)	RBB2_BOV	23 kDa								100%	67%	100%	100%	Ĵ
4	~		(P07318) Beta crystallin B1	RBB1_BOV	28 kDa			100%	100%							77%	
5	~		(P11842) Beta crystallin A4 (Beta (	RBA4_BOV	24 kDa												
6	-		(P26444) Beta crystallin A2 (Beta	RBA2 BOV	22 kDa												Í
7	~		keratin, 67K type II cytoskeletal	CONT   gi   8	65 kDa			50%				73%					

# 4. Menu の各項目について

この章では、Scaffold のメニュー選択内容と各項目で設定できる内容について説明しています。最初に 一通り説明し、それ以降の項目で各選択項目の中でより詳しい解説が必要な情報についてピックアップ しています。

**4-1. menu**の内容 説明

File Edit View Experiment Export Quant Window Help

	メニュー		コマンド					
File	;		・New - ファイル作成ウィザードを起動します。詳細は2章「MASCOT					
			結果取り込み」をご覧ください。					
File	Edit View Experiment Expor	t Qu	・ <b>Open</b> - Scaffold のファイル(.sf3)を開きます。					
	New Ctrl	+ N	・ <b>Merge</b> - Scaffold 上で .sf3 ファイルを統合します。詳細は					
2	Open Ctrl	+0	「 <b>4-3</b> .sf3 ファイルの統合(merge)」をご覧ください。					
*	Merge Ctrl	+M	・Close - 今開いている sf3 ファイルを閉じます					
	Close		・ <mark>Save</mark> - 今開いている sf3 ファイルを保存します					
	Save Ctrl	+ S	・Save As - 今開いている sf3 ファイルを別名で保存します。					
	Save As	-	・Save Condensed Data - 今開いている sf3 ファイルを、保存 対					
	Save Condensed Data Ctrl	+1	象を変更しながら別名保存します。詳細は「4-4.データサイズ 間引き					
	Print Ctrl	+ P	方法」をご覧ください。					
	Print Preview		・ <b>Print</b> - 現在開いている view 画面を印刷します。					
	Exit		・Print Preview - 印刷の preview を表示します。					
			・ <b>Exit</b> – Scaffold を終了します。					
Edi	t		・Copy – 選択時に開いている view のデータをそのままクリップボ					
			ードにコピーします。タブ区切りのデータとなります。					
Ba	C	Chilly C	・Find - 検索用のダイアログを開き view から該当項目を探します。					
4A	Find	Ctrl+F	・ <mark>Edit FASTA Database</mark> - FASTA データベースを追加します。詳細					
		Ctrl + D	は「 <b>2-4</b> . 配列データベースの登録」をご覧ください。					
	Edit Peptide Thresholds	CIII+D	・Edit Peptide Threshold - ペプチドの閾値を設定します。詳細は					
	Edit Annotation Options		「 <b>3-2-2</b> . Filtering Samples」内の Peptide Threshold 項目をご覧く					
	Bulk Operations		ださい。					
	Preferences		・Edit Annotation Options-GO に関する設定画面を開きます。詳					
	Advanced Preferences		細は「 <b>4-5</b> .GO の設定」をご覧ください。					
			・Bulk Operation – [Samples viewのみ] 選択項目をまとめて設定					
			変更します。					
			・Preferences – Scaffold の設定変更。詳細は「4-6.Preferences 設					
			定」をご覧ください。					
			・Advanced Preferences – Scaffold の設定変更。詳細は					
			「 <b>4-7</b> .Advanced Preferences」をご覧ください。					

<b>س</b> ב <b>ت</b> ×	コマンド					
View	・Navigation Pane – View 切り替えパネル(画面左側)表示/非表示					
	・Switch Sample View – BioSample / MS Sample 表示切替					
View Experiment Export Quant Window He	・Switch Display Options - Display Options を切替。詳細は					
✓ Navigation Pane Ctrl+0	「 <b>3-2-1</b> .Display options」をご覧ください。					
Switch Sample View	・Show Entire Protein Clusters – タンパク質のクラスターに 含					
Switch Display Options	まれる、Protein probability が設定基準値以下のメンバー タ					
Show Entire Protein Clusters Show Lower Scoring Matches	ンパク質について表示/非表示 するかの切替					
Show <5% Probabilities	・Show Lower Scoring Matches -Protein probability が設定					
<ul> <li>Show Sample Notes</li> <li>Show Hidden Proteins</li> </ul>	基準値以下の場合に display option で定められた数値を各サンプル					
Show GO Annotations	のセルに表示/非表示 するかの切替					
Navigate •	・Show < 5% Probabilities – Peptide Probability のとても 低					
	いペプチドについて 表示/非表示 するかの切替					
	・Show Sample Notes – Samples 画面下段の「Information pane」					
	について 表示/非表示 するかの切替					
	・ <mark>Show Hidden Annotations</mark> – Hidden と定義したタンパク質の表					
	示/非表示 するかの切替					
	・Navigate – 画面内にタブがある view 内の pane について、選択タ					
	ブを切替					
Experiment	・Edit Experiment – 選択中の MS Sample(experiment)に つ					
	いて、名称などを設定するダイアログが現れます					
Edit Experiment	・ <mark>Edit BioSample</mark> – 選択中の BioSample の編集。「Load Data」					
Edit BioSample Ctrl+E	view→sample タブ選択右クリック→「Edit BioSample」と同じ 操					
Delete Biological Sample	作(ダイアログ出現)					
Queue Files For Loading Ctrl+Q	・Add BioSample – BioSample を追加。「Load Data」view→「Add					
Queue Structured Directories For Loading Apply New Database	BioSample」と同じ操作(ダイアログ出現)					
Extract Alternate IDs Apply Protein Annotation Preferences	・Delete BioSample – BioSample を削除。「Load Data」view→					
Load and Analyze Queue     Ctrl+A	BioSample のタブ選択右クリック→「Delete BioSample」と同じ操作					
Add or Edit Annotations	(ダイアログ出現)					
uantitative Analysis	・Queue Files For Loading – Experimentを追加。「Load Data」					
	view→「Queue Files For Loading」と同じ操作(ダイアログ出現)					
	•Queue Files From Mascot Server For Loading - 1つ上の					
	「Queue Files for Loading」コマンドと似ていますが、dat ファイルを					
	MASCOT Server のログから選択しネットワーク経由で取得。					
	•Queue Structured Directories For Loading – $2 \supset \pm 0$					
	「Queue Files for Loading」と似ていますが、取得対象がファイルでな					
	<フォルダ内のファイル群である場合に使用。「Load Data」 view→					
	「Queue Structured Directories」と同じ操作(ダイアログ出現)					

אב <i>ב</i> א	コマンド
Experiment 続き	・Apply New Database – データベースの追加。詳しくは 「2-4.
	配列データベースの登録」を参照してください。
	・Extract Alternate IDs – 検索時の「Accession」とは別に 定め
	られた ID に関する設定。Pathway など外部データベースとの連携の
	際に使用する ID の抜き出しルールを選択します。
	・Apply Protein Annotation Preferences - 類似タンパク質 グ
	ループの中で、どのタンパク質を代表として選択し表示するかに関す
	る設定。正規表現で設定します。
	・Load and Analyze Queue - 「Load Data」View にて Experiment
	と BioSample の紐づけが完了しているものの、Experiment の 取
	り込みが未完了な状態の場合、取り込みを開始します。
	・Reset Peptide Validation - 主に Proteins View で、手動で
	 変更した peptide valid チェック(同定ペプチドとして認識する/ しな
	い の切り替え)をリセットします。
	・Add or Edit Annotations – GO または Pathway 情報の付与に関
	する設定を行います。詳しくは「 <b>4-5.</b> GO の設定」、並びに「 <b>4-8.</b>
	Pathwayの設定」をご覧ください。
	・Quantitative Analysis – 定量解析(検定)を行います。詳細は 11
	章の「定量手法と検定」をご覧ください。
Export	・Subset Database – 結果に出てきたタンパク質のうち特定の条件
	を満たすタンパク質のみを fasta フォーマットで出力します。
Subart Database	・ <mark>Spectra</mark> – 特定の条件を満たす ピークリストを出力します。
Subset Database	・BLIB – blib フォーマットで同定結果の中かピークリストを出力しま
	す。skyline や Scaffold DIA などでで使用可能です。
ProtXMI	・ <b>ProtXML</b> – protXML フォーマットで解析結果を出力します
mzldentMl	・mzIdentML – mzIdentML フォーマットで解析結果を出力します
SEDB	・SFDB – Scaffold PerSPECtives(別売) フォーマットでファイルを
Scaffold Batch	保存します。
Scaffold Batch Archive	·Scaffold Batch /
	·Scaffold Batch Archive
Publication Report	ともに Scaffold Batch(別売)で使用するフォーマットファイルを保存
Samples Report	します。
Spectrum Reports	
Peptide Reports	[次頁に続く]
Protein Reports >	
PSEA-Quant Report	
Current View	
街 Complete	

-ב־א	コマンド
Export 続き	以降は Excel で開く事ができる CSV フォーマットでの出力です
<ul> <li>Publication Report</li> <li>Samples Report</li> <li>Spectrum Reports</li> <li>Peptide Reports</li> <li>Protein Reports</li> <li>PSEA-Quant Report</li> <li>Current View</li> <li>Complete</li> </ul>	<ul> <li>・Publication Report - Publish view で表示される内容と同じ情報・Samples Reports - Samples view で表示される内容と同じ情報で出力します。出力時に、表示する数字を Display option から選択できるほか、sameset/subset のタンパク質も併せて出力するかを選ぶことができます。</li> <li>・Spectrum Reports - 検索結果をスペクトル単位で出力します。</li> <li>Spectrum の数字をそのまま出力するか、定量指標を出力するか選ぶことができます。</li> <li>・Peptide Reports - 検索結果をペプチド単位で出力します。</li> <li>Protein View の Peptide pane のデーター覧に該当します。</li> <li>・Protein Reports - 検索結果をタンパク質単位で出力。Protein View の Peptide pane のデーター覧に該当します。</li> <li>・Protein Reports - 検索結果をタンパク質単位で出力。Protein View の Protein pane のデーター覧に該当します。</li> <li>・Protein Report - PSEA-Quant 解析(同定タンパク質について機能別のグループ化を行う解析)のレポートを出力します。</li> <li>・Current View - 現在みている View の情報を出力(*View によっては選択できません)</li> <li>・Complete - 様々な解析データをまとめてフォルダに出力します。</li> <li>・ sample 画面の display option を変えたパターンで出力</li> <li>・ タンパク質毎に Peptide Report と同内容の情報が出力</li> </ul>
Quant Quant Window Help Q+ Launch Q+ Quantitation Browser Edit Quantitative Method/Purity Correction	<ul> <li>(「Q+」または「Q+S」モジュール購入時で該当データを読み込み時のみ 選択可能)</li> <li>・Launch Q+ Quantitation Browser – Q+モジュールを起動</li> <li>・Edit Quantitative Method / Purity Correction – 定量解析に 関連する値の補正に関する設定</li> </ul>
WintowWintowHelpEmphasizeImphasizeLoad DataCtrl+1SamplesCtrl+2ProteinsCtrl+3ImageQuantifyCtrl+4SimilarityCtrl+5ImageStatisticsCtrl+6ImageStatisticsCtrl+7	<ul> <li>・Emphasize - 選択中のviewが複数のpanelから構成される時、大きく表示したい箇所を emphasize で選択してください。</li> <li>・view名 - view名と同じ項目を選択する事で View 画面の切り替えができます。画面左側「Navigation pane」で各 View のパネルをクリックするのと同じです。(表示されているショートカットキーでも画面を切り替える事ができます。)</li> </ul>

	メニュー	コマンド
Hel	p	・Help on Current View – 現在開いている view に関して online
		help 画面が開きます。
Help		・ Help Contents – online help が開きます。
	Help on Current View	・ Scaffold User's Guide – PDFの Scaffold マニュアルが開きま
0	Help Contents	す。
0	Scaffold User's Guide	・ <b>Scaffold Q+ User's Guide</b> – PDFの Scaffold Q+マニュアルが開
0	Scaffold Q+ User's Guide	きます。
0	Open Demo Files	・ <b>Open Demo Files</b> - 予め準備されている demo ファイルを開く事が
0	Scaffold FAQs/Resource Center	できます。
	Show Log Files	・Scaffold FAQs/Resource Center – Proteome Software 社のサ
	Referencing Scaffold	イトにある FAQ や tutorial 用の Resource にアクセスできます。
	Upgrade License Key	・Show Log Files - errorlog, output log が格納されているフォル
		ダを開きます。
	About Scaffold	・Referencing Scaffold – Scaffold 関連の reference (論文)に関す
		る情報にアクセスできます。
		・ <b>Upgrade License Key</b> – license を再入力できます。
		・About Scaffold – Scaffold のバージョンや、コピーライトに関する
		情報などにアクセスできます。
Ider	ntityE	・Quantitation Options – identityE に関するオプションを指定
		・Export IdentityE report – IdentityE のレポート同様、解析対象
		ペプチド情報のタブ区切りデータを出力します。

# **4-2.** ファイル保存方法・ファイルを開く方法

File -> Save (又は Ctrl キー + S)でファイルを保存できます。Scaffold ファイルの拡張子は「sf3」です。

Scaffold - Samples - Scaffold	d_WholePr	oteome-converted				
<u>File</u> <u>E</u> dit <u>V</u> iew Experiment	Export	<u>W</u> indow <u>H</u> elp				
<u>N</u> ew	Ctrl+N	🏙 🌇 🍝 a	🇱 🔟 Mir	n Protein:	95.0% <u>-</u> M	in # Peptide
💕 <u>O</u> pen	Ctrl+0					
ᆶ <u>M</u> erge with SFD	Ctrl+M	er of Unique Peptides	Req Mod	ls: No Fi	ilter	
<u>C</u> lose		robability Legend:				
<u> </u>	Ctrl+S	over 95%				
J S <u>a</u> ve As		Save the Current Scaffold	File		uity.	
Save Condensed Da <u>t</u> a	Ctri+1 *	20% to 49%	5		Amt	5.5
🛃 <u>P</u> rint	Ctrl+P	0% to 19%	q m N	(eight	ning.	dhesic
🗟 Print Preview			22 ion	ular V	in Gro	cical a cical n illing
E <u>x</u> it		'iew: I Proteins (69)	Acces	Molea	Prote	biolog biolog cell k
	≧Alpha−a	mylase 1 precursor – H	AMY1_HU	58 kDa	🔺 Homo	
2 🗸	Mucin-5	B precursor - Homo sa	MUC5B H	590 kDa	★ Homo	

OS が日本語環境の場合ファイルできるだけデスクトップ上でなく別の場所に置くようにしてください。 保存したファイルを開くには、File -> Open (Ctrl + O)とします。旧バージョンのファイル(拡張子 sfd)を 開く場合、フォーマット変換の過程が入るので多少時間がかかります。ご注意ください。

48 Scaffold - Samples - Scaffold	_WholeP	roteome-converted				
<u>File E</u> dit <u>V</u> iew E <u>x</u> periment	Export	<u>W</u> indow <u>H</u> elp				
<u>N</u> ew	Ctrl+N	🛍 MS 🔬 👒 4	🌊 📊 Mir	n Protein:	95.0% -	Min # Peptide
<u>⊖</u> pen	Ctrl+0			r		
ᆶ Merge with SFD	Ctrl+M	er of Unique Peptides	Req Mod	ls: No Fi	lter	
<u>C</u> lose		robability Legend:				
🛃 <u>S</u> ave	Ctrl+S	over 95%				
S <u>a</u> ve As		80% to 94%			.≱	
🛃 Save Condensed Da <u>t</u> a	Ctrl+T	Save the Current Scaffold	<mark>l File</mark>		mbigu	_
	Chul - D	0% to 19%	aber	1.	A gu	lation
Print Proviou	CUI+P		N N	r Wei	y iroupi	l adhi 8 sores
		_	0. 8 8	cula	ain G anom	ogical ogical killin lar p
E <u>x</u> it		l Proteins (69)	Acc	Mel	Prot Tax	biol cell
	Alpha-a	mylase 1 precursor – H Powerschaft	AMY1_HU	58 kDa	★ Homo	

# 4-3. sf3 ファイルの統合 (File ->merge)

別々に作成された sf3 ファイルを、Scaffold 上で統合する事ができます。

統合する時はまず一方の sf3 ファイルを Scaffold 上で開きます。File -> merge とするとファイル 選 択画面になるので、もう一方の sf3 ファイルを選 択します。すると右図のような Merge 操作のダイ アログが現れます。ダイアログの「Merge」ボタンを 押すとファイルの統合が 行われます。

💱 Queue Scaffold Files 🛛 💦
Queue Scaffold Files For Merging
File Name
merge2.sf3
Image: Margin Image: Cancel     Add More Files

なお、Merge の逆、すなわちデータから一部のデータを削除するのは「Load Data」view から行います。 詳細は「**5-3**.BioSample tab と Load and Analyze Queue button」をご覧ください。

# 4-4. sf3 ファイルのデータサイズを削減する方法

Scaffold で読み込む dat ファイルのサイズが大きく処理が遅くなったりできなくなる場合、sf3 ファイル が内部に持っている MS/MS のスペクトルデータを捨て、sf3 ファイル全体のサイズを小さくする事で対処 できます。

## * ここで指定する操作でファイルを保存すると、データが完全に捨てられてしまい元の状態に戻す事が できません。試す場合などは必ずファイルのバックアップを取ってから行ってください。

File -> Save condensed data と選択すると、選択肢のダイアログが現れます(下図)。

🞯 Save Condensed File		-							
This function creates Condensed Scaffold files containing only identified spectra for distributing data over the web or email. Condensed files with only identified spectra are generally 50% the size of uncondensed files, while Condensed files without any spectra are generally 10% the size. Warning: "Saving Without Any Spectra" and "Save MCP Required Spectra" options remove TIC and precusor intensity quantitation data.									
	Save Only Identified Spectra Save Frozen Only Identified Spectra								
	Save Without Any Spectra Save Frozen Without Any Spectra								
	Save MCP Required Spectra Save Frozen MCP Required Spectra								
lelp	Cancel								

選択肢の内容は以下の通りです。なお、「Frozen」とついているものは、ついていないものに加えて ファイル情報を内部で圧縮しており、ファイルサイズはより小さくなりますが処理は遅くなります。

### •Save Only Identified Spectra

#### **·Save Frozen Identified Spectra**

同定基準を超えるスコアを持つデータのみスペクトルデータを保存し残りのデータは破棄します。

### •Save Without Any Spectra

#### Save Frozen Without Any Spectra

同定基準を超えるものも含め、すべてのスペクトルデータを破棄します。各ペプチドの配列や スコア に関する情報は残ります。

#### Save MCP Required Spectra

#### **·Save Frozen MCP Required Spectra**

MCP で提出が求められる基準に基づいたもので、基本的には Only Identified Spectra と同じです。

処理によりファイルサイズが減少します。目安として、「Only Identified Spectra」が元データの 50%、 「Without Any Spectra」が元データの 90%を削除します。また Frozen の圧縮では 1/2~ 1/3 と なります。

ある解析例では以下のようにファイルサイズが縮小されます。

項目	ファイルサイズ
元のデータ	1,337,646 KB
Only Identified Spectra	457,167 KB
Without any spectra	79,657 KB
Save MCP Required Spectra	457,134 KB
Frozen Save only Identified	212,247 KB
Spectra	
Frozen Without Any Spectra	36,271 KB

# 4-5. GO の設定

Scaffold の Samples ウィンドウで Gene Ontology の情報を表示させる事ができます。Gene Ontology の情報は NCBI から取得することができるほか、EBI にて公開されている Gene Ontology Annotation Database ファイルを Scaffold がインストールされている PC にダウンロードし、その ファイ ルから取得する方法もあります。ローカルのファイルをいったんセットすると、インターネットを介した取得 より短時間で情報を取得できるほか、インターネット接続がない/回線速度が遅い 環境でも問題なく利用 できます。以降、「GOA ファイルのセット」「表示する GO の設定」「GO 情報を付与、表示する方法」について ご案内します。

## **4-5-1. GOA** ファイルのセット

Gene Ontology Annotation Database を Scaffold にセットする方法について記します。操作は GO のファイルが自動で取得できる場合と、自動取得を試みた結果何らかの理由で操作が完了しない場合にファイルを別途取得してセットする場合の2種類をご案内いたします。

[次頁に続きます]

### [ファイル取得を自動で行う場合]

Edit ->「Edit Annotation Options」->「GO Annotation Database」にて「Add」ボタンを押します。現 れるダイアログの「Source」項目で使用予定の生物種を選択し、「Add」ボタンを押します。(下図)

👹 Sca	ffold Evaluation - Samples -	tutorial_6								
File Edi	t View Experiment Export	Quant W	/indow Help							
	Copy Find	Ctrl+C Ctrl+F	🛍 MSa   🍂	<b>~</b>	-					
	Edit FASTA Databases	Ctrl+D	identification Pro	bat	👹 Con	figure Annotatio	n Sources			$\times$
	Edit Peptide Thresholds		Probability Leg	en	GO Ani	notation Databases	$\triangleright$			
	Edit Annotation Options	>	over 95%							
	Bulk Operations		80% to 94%		Databa	ase Name		Alternate ID So	ource	
	Dreferences	>	50% to 79%	4	NOBI A	Annotations		NCBI:None		
<mark>1.</mark> Eo を選	<b>1.Edit -&gt; Edit Annotation Options</b> を選びます。				pamgo	<u>atumetaciens_valid.</u> 2「GO Anno 「 <b>Add</b> 」をク	^{gar} tation I フリック	Databases」 します。	タブ内の、	
Sim	#         4         9           antify         5         7	Bio Vie Identifi Keratin Keratin Chain I Keratin Keratin	ew: ied Proteins (1 , type I cytosk; , type II cytosk E, Leech-Deriv; , type II cytosk , type I cytosk;	1) ele .eli .eli .eli ele	() L	elp	<u>A</u> dd	Edit…	Delete Ca	ancel



### [ファイルを別途準備してセットする場合]

前述の [ファイル取得を自動で行う場合] にて、ファイル取得が一定時間内に終わらなかったなど何らかの 理由で実行完了しなかった場合、ファイル取得を別途行ってそのファイルを読み込むことで問題を回避でき ることがあります。

Edit ->「Edit GO Term Options」->「GO Annotation Database」にて使用予定の生物種を選択し、 「Add」ボタンを押します(下図)。





### 4-5-2. 表示する GO 情報の設定

GO は「Biological process」「Cellular component」「Molecular function」の3つについて、それぞれ 階層構造で構成されています。Scaffold では GO 情報を表示させることができますが、どの階層のどの項 目について表示するかは以下 2 つの選択肢があります。

- PSEA-Quant を適用し得られた Gene Ontology を適用

自身で選択

ここでは表示内容に関する設定方法をご案内します。

[設定画面の表示]



# [a.Automatically select with a PSEA-Quant analysis を選択する場合]

Г

<ul> <li>▲ Add or Edit Annotations</li> <li>Protein Identifier</li> <li>Accession Number</li> <li>Accession Number</li> <li>Annotation Source</li> <li>③ GO Terms Current Set</li> <li>○ Pathways Current Set</li> <li>○ Displayed Annotation Selection</li> <li>④ Automatically select with a PSEA-Quant analysis</li> <li>○ Manually select</li> <li>○ Manually select</li> </ul>		
Protein Identifier ● Accession Number Annotation Source ● GO Terms Current Set ● Pathways Current Set Displayed Annotation Selection ● Automatically select with a PSEA-Quant analysis ● Manually select ● Help	🛓 Add or Edit Annotations	<b>3a.</b> Automatically select with a
Accession Number I OKI Gutter utility one) とといくという	Protein Identifier	PSEA-Quant analysis」を選択し
Annotation Source	Accession Number	
GO Terms Current Set     Pathways Current Set     Displayed Annotation Selection     Automatically select with a PSEA-Quant analysis     Manually select     Manually select     OK pancel	Annotation Source	「UK」ホタンを押しまり
Pathways Current Set      Displayed Annotation Selection      Automatically select with a PSEA-Quant analysis     Manually select      Help      OK Pancel	GO Terms     Current Set	
Displayed Annotation Selection  Automatically select with a PSEA-Quant analysis  Manually select  Help  OK Pancel	O Pathways Current Set	$\sim$
OK Pancel		
Oisplayed Annotation Selection     O Automatically select with a PSEA-Quant analysis     Manually select     OK ancel		
Automatically select with a PSEA-Quant analysis     Manually select     OK ancel	Displayed Annotation Selection	
Manually select     OK Jancel	Automatically select with a PSEA-Qua	ant analysis
Help     OK Jancel	O Manually select	
Help     OK Dancel		
Help     OK     Oancel		
	🕡 Help	

👹 PSEA-Quan	t Analysis	×			
Protein Set Sour	œ				
GO Terms	☑ Set the Displayed GO Terms to the most significant	t results			
	✓ Limit results to the top 20€				
Patriways	Limit results to terms with p-value less than	0.01 🖨			
	🗹 Exclude redundant GO Terms	<b>4a.</b> 自動的に、表示に最適な GO グル			
Analysis Score		ープを選択する 「PSEA-Quant			
Experiment-	Wide	analysis」実行に関するパラメータを			
One Catego	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	選択します。設定後、「Apply」ボタン			
O Two Catego	v	を押すと設定が適用され、設定に合わ			
		せた GO 情報が表示されます。			
🔳 Quantitative	Value: Normalized Total Spectra 🔞 How to change this				
Save a copy	of the PSEA-Quant Report	*このプログラムは本来定量解析との			
🔞 Help	Apply	結びつける目的で開発されたもので			
		す。今回の選択肢でも Quantitative			
		Value と結び付けた Report 出力に			
		関するオプションを選択する事が			
		出来ます。			

# [b.Manual Select を選択する場合:表示項目を増やす操作]

Add or Edit Annotations	×
	~
Protein Identifier	
Accession Number	🔿 Alternate ID
Annotation Source	
GO Terms Current Set	3b.「Manually select」を選択し、
O Pathways Current Set	「OK」ボタンを押します
Displayed Annotation Selection	
Automatically select with a PSEA	A-Quant analysis
🙆 Help	OK Cancel
Search: Total Ter	ms: 46441
biological process     cellular process     event     event	<b>4b.</b> 上段の GO 情報で加えたい項目を階層構
	造を展開しながら探し出し、選択した状態で
ell quiescription The cell cycle phase, following G1, during v ell quiescription of the cell cycle phase	「Add」ボタンを押します。
telophase     mitotic cell cycle phase	
M phase     metaphase     G1 phase     G2 phase     G2 phase     G2 phase     G2 phase     G1 of the process     f-• response to stimulus     f-• biological regulation     f-• multi-organism process     f-• growth	
Add Selected GO Terms: 52	et to User Default Reset to Scaffold Default
Color ID Head Node Selected GO Terms	Definition
22610 Biological Process biological adhesion	The attachment of a cell or organism to a substr
65007 Biological Process biological regulation     1906 Biological Process cell killing	Any process that modulates a measurable attribu Any process in an organism that results in the kill
9987 Biological Process cellular process	Any process that is carried out at the cellular lev
<ul> <li>ozooz biologicar Processi developmentar processi</li> </ul>	A biological process whose specific duculifie is th

e e e e e e e e e e e e e e e e e e e	<del>esponse to s</del> piological reg multi-organis growth	ulation m process									~
Selected G	GO Terms: 53	3	Add Remove	Reset 1	to User Default	Reset to	Scaffold Defau	ılt			
Color	ID	Head Node	Selected GO Terms		Definition						
	51320 22610 65007 1906 9987 32502 51234 40007 2376 51179 40011 8152	Biological Process Biological Process	S phase biological adhesion biological ref cell killing cellular processes developmental process establishment of local growth immune system process localization localization location metabolic process	<b>5b.</b>	The cell cyc The attachor Any process Any process Any process Any process Any process Self-propell The chemic A biological	cle phase, foil ment of a cel s that modula s in an orzen 示リス) e m size or n s involved in s in which a ed movemen al reactions :	iowing G1, dur Lor organism ttes a measura ism that result にて該当 nass or an end the developm cell, a substan c of a cell or c and pathways, ab inches on	ing which DN coa substrate a substrate s in the killin 項目が力 ret or functio ce, or a cellu rganism from including ana	A synthesis ta , another cert of any biologi g of its own c ロ わりま a part or arm ning of the im lar entity, suc one location bolism and cs m of the arm	ites place. , or other c cal process ells or thos for mune syste th as a prot to another. itabolism, b or different	
🕜 <u>H</u> el	p					Save dis	olayed GO Ter	ms as uær d	efault Sele	ect <u>C</u> a	incel

### [Manual Select を選択する場合:表示項目を減らす操作]



# 4-6. Preferences の設定内容

Scaffold 動作に関する設定が集まっている「Preferences」ダイアログは、メニューの 「Edit」→ 「Preferences」と選択する事で開く事ができます。Preferences ダイアログには、以下の計9つのタブから 構成されています。

[Internet][Memory][Procesors][Web Link][Mascot Server][Display Settings][Password] [Paths Settings][MZID]

	👹 Preferences				$\times$
	Mascot Server	Display Settings	Password	Paths	MZID
以下、谷タフで設定できることについて説明して	Internet N	Memory Pro	Doessors	Web	Link
います。	Internet Settings				
	Allow Scaffold to	connect to the Inter	net		
	Use an HTTP pro:	xy server			
□ Internet	Proxy server name (or IP address):				
Internet 接続する/しない、Proxy サーバーの	Proxy port number:				
設定を行う事ができます(右図)。					
	@ Help		Appl	y C:	ancel

### □ Memory

Scaffold で使用する事ができる Memory の最大値を設定する事ができます。Scaffold の動作が遅い時、 設定値を上げる事で改善される事があります。設定変更の内容を反映させるためには、Scaffold ソフ トウェアの再起動を行う必要があります。

### $\Box$ Processors

Scaffold で使用するコア数を指定する事ができます。ただし Scaffold 自体は使用可能なスレッド上限は 2で、それ以上の設定は X!Tandem の検索時にのみ有効です。

### $\Box$ Web Link

Protein Information:

Samples Viewの画面下部、Protein Information (下図、右図)で表示されるタンパク質データベース へのリンクに関する設定ができます。

DYHC1_MOUSE

Lookup Identifier In: NCBI (e.g. g)1351907,ALB

	Strate Preferences							
n Information	Mascot Server	r Display Settings Password			Paths	MZID		
質データベース	ニース Internet Memory Processors Wet							
	Web Sites							
,	NCBI (e.g. gi 1351 UniProt (e.g. ALE HPRD (e.g. P027) WikiPathways (e.;	<mark>1907,ALBU</mark> E BUBOVIN,PC 69) g Gene Name	B <mark>OVIN,PO</mark> 2769) ∋)	02769)				
U_BOVIN_P02769)	(							
		New Dat	tabase	Edit	De	elete		
	giar g			Apply	Ca	ncel		

#### □ Mascot Server

log ファイルを参照する MASCOT Server に 関 する設定を行う事ができます。

#### Display Settings

利用できる View を選択する事ができます(右図)。 チェックを外すと画面左の Navigation pane から 消え、さらに menu の Window でも選択する事が できなくなります。

またデータ取り込みやファイルオープン時に最初に 開く View に関する設定も行う事ができます。

#### □ Password

ファイル単位で各種操作にパスワードを設定し、パ スワードを入力しないと幾つかの操作ができない ようにします(右図)。設定に関する各項目に つい ての説明は以下の通りです。

- Use Password
   パスワード使用の ON/OFF、並びにパスワードを設定します。
- Protect Exporting Spectra
   スペクトルを出力する際パスワードを要求し
   ます。
- Protect Resetting Thresholds
   Threshold を変更する際パスワードを要求します。
- Protect Changing Display Settings
   表示 View 画面の変更をする際にパスワードを要求します。
- Protect Hidden Proteins
   Hidden protein の設定を変更する際にパスワードを要求します。

### Path

修飾設定で利用しているファイル unimod に関する設定を行います。

- Do not use UNIMOD
   結果ファイルに入っている修飾に関する情報をそのまま利用します。
- Use Scaffold default UNIMOD
   Scaffold が自身で持っている UNIMOD ファイルを利用します。
- Use a custom UNIMOD file ユーザーが準備した UNIMOD ファイルを利用します。

🐖 Preferences					×		
Internet Memory Processors Web Link Mascot Server Display Settings Password Paths MZID							
Display Setting	s						
Show Samples	s View						
Show Proteins	s View						
Show Similarit	y View						
Show Quantita	ation View						
Show Publish	View						
Show Statistic	x View						
Default view optio	n (for new files	3):					
Protein Identification Probability $\sim$							
Reset Don't Show Messages							
🕜 Help			A	pply	Cancel		
Preferences					×		
Internet Memory Processors Web Link					Link		
Mascot Server	Display Set	tings	Password	Paths	MZID		

Apply

Cancel

Protect Exporting Spectra

Protect Hidden Proteins

🕜 Help

Protect Resetting Thresholds

Protect Changing Display Settings
#### □ MZID

MZID にタンパク質の配列情報が含まれている場合、MZID に含まれている方のタンパク質配列を 優先して使用するように設定する事ができます。

### 4-7. Advanced Preferences の設定内容

Scaffold が結果検証のアルゴリズムで使う検索エンジンのスコアについて定義する事ができます。 設 定内容により同定基準に変動があり、結果も変わってきます。SequestとMASCOT用の設定がありますが、 Sequest(Proteome Discoverer) 用の設定はバージョンが 1.2 より古い場合のみ適用を検討するもので、 多くの人は当てはまりません。

#### [Sequest]

バージョンが 1.2 より古い場合、以下の資料をご参照の上設定値を検討してください。ver.1.3 以上の場合、設定画面にあるように最適な設定を「Auto-Detect」します。

・PDF(英文) マニュアル Chapter.4 Scaffold's Main Window -> Advanced Preferences -> Sequest tab ・Online help Main menu component ->Advanced Preferences -> Sequest tab

#### [MASCOT]

「Ion – Identity Scoring も利用」するか「Ion Score のみ使用」するかを選択することができます。 設定は、MASCOT から来た結果か、Proteome Discoverer から来た結果かでさらに分かれています。

	Use Ion-Identity Scoring	Use Ion Score Only	
Mascot:	۲	0	
Discoverer:	۲	0	

### 4-8. Pathway に関する設定

Scaffold の Samples ウィンドウで Pathway の情報を表示させる事ができます。Pathway の情報は 「Wikipathways」または「Reactome」サイト から取得する事ができます。以降、「データベースの使用条件 (タンパク質 ID)」、「適用の実施方法」「お勧めの Pathway 情報表示」についてご案内します。

#### 4-8-1. Wikipathways,Reactome と使用時のタンパク質 ID について

WikiPathways, Reactome はそれぞれ反応パスウェイについてまとめられたデータベース[サイト]です。 詳細は以下情報をご参照ください。

#### Wikipathways

Kelder T, Pico AR, Hanspers K, van Iersel MP, Evelo C, Conklin BR. (2009) Mining Biological Pathways Using WikiPathways Web Services. PLoS ONE 4(7)

#### Reactome

Fabregat et al. 2017 PMID: 28249561

Wikipathways を利用するためには、「gene name」情報が必要です。Scaffold にて gene name は FASTA ファイル内の情報、または NCBI のサイトから取得します。gene name 情報の取得並びに表示させ るには、「Experiment」->「**Extract Alternate IDs**」を実施する必要があります。

一方、Reactome データベースを利用する際も Uniprot の Accession (例:P02769 な ど。'ALBU_BOVIN などの表記ではない)情報が必要となります。そのため、Reactome 使用を前提とする 場合、検索時から Accession (P02769 など)が ID となっているデータベースに対する検索結果を Scaffold に取り込むように注意してください。

#### 4-8-2. Pathway 情報の表示 [Scaffold 上]

Pathwayに関する情報をScaffold のSamples 画面で表示させる事ができます。ただしScaffold上では 該当タンパク質が含まれる Pathway の種類が表示されるのみです。タンパク質が含まれる Pathway 一覧 や、特定 Pathway の全体図とその中で該当タンパク質が占める位置の確認については、外部サイトの情報 を確認する必要があります。外部サイトの参照については、「**4-8-3**. Pathway 情報の表示 [外部サイト]」を ご参照ください。

次頁以降、Scaffold 上で Pathway 情報を表示させる操作方法についてご案内しています。

#### [設定画面の表示]



🛓 Add or Edit Annotations	×
Protein Identifier	
Accession Number	🔿 Alternate ID
Annotation Source	
O GO Terms NCBI	~
Pathways     reactome.org	$\sim$
Only annotate filtered set of prote	2.Annotation Source で「Pathways」
Displayed Annotation Selection	を選択します。
Automatically select with a PSEA-	Quant analysis
◯ Manually select	
🕜 Help	OK Cancel

## [a.Automatically select with a PSEA-Quant analysis を選択する場合]

Ad	ld or Edit Annot	ations	×
- Protei	in Identifier		
	in Identiner		
		atically soloct with a	
	a. Autom	atically select with a	
P	'SEA-Quan	t analysis」を選択し、	~
	「OK」ボタ	ンを押します	
Displa	ved Annotation Se	election	
A	Automatically selec	t with a PSEA-Quant analysis	
	Anually select		
۲	Help	C	
		🐖 PSEA-Quant Analys	sis ×
		Protein Set Source	
		GO Terms	
		🗌 🖸 Star Color	et the Displayed GO Terms to the most significant results
			✓ Limit results to the top 20 🖨
			Limit results to terms with p-value less than 0.01 🊔
		5	
		Aralysis Score	グループを選択する 「PSEA-Quant
			analysis」 実行に関するパラメータを
		Experiment-Wide	
		One Category	選択します。設定後、「Apply」ホタン
		🔿 Two Category	を押します。
		📕 Quantitative Value: No	brmalized Total Spectra 🔞 How to change this
		Save a copy of the PS	SEA-Quant Report
		🕜 Help	Apply Cancel
🞯 Write PSE	A-Quant Report (	ſSV format)	×
保存:	📜 pathwayQ2019	0607	✓ p ▷ ···
<b>_</b>			
最近使った…			5a. 続けて PSEA Qiamt Report の
			山力坦応レファイルタが明われる
デュカトップ			
			力・決定します。
KHE VIK			Pathway 情報が表示されます。
PC			
<b>1</b>	ファイル名(N):	A-Quant Report for checkof49_test04Pathwa	ayPXD12979 xls 保存
ネットワーク	ファイルのタイプ( <u>T</u> ):	MS-Excel files	~ 取消



#### [b.Manual Select を選択する場合:表示項目を増やす操作]

🛓 Add or Edit Annotations	×
Protein Identifier	
Accession Number	🔿 Alternate ID
3b.「Manually select」を選択し、	
「OK」ボタンを押します	~
Patriways Current Sec	$\sim$
Displayed Annotation Selection	
O Automatically select with a PSEA-Quar	nt analysis
Manually select	
Help	OK Cancel

🛓 Co	nfigure Reactome	×
Resourc	æ UniProt	~
	Opecies Iphapapillomavirus 9 renicola marina acillus anthracis os taurus aenorhabditis elegans andida albicans anis familiaris	<b>4b</b> . 表示させたい Pathway 項目を 手動で選択し、チェックを入れます。 必要に応じてダイアログ下部にある 検索ウィンドウなどを使用します。 すべて選択後、「OK」ボタンを押しま す。
	avia porceilus ercopithecus aethiops hlamydia trachomatis	
	hlorocebus sabaeus lostridium botulinum lostridium perfringens	
	lostridium tetani orynephage beta owpox virus	
	ricetulus griseus rithidia facciculata a far craciaeur	✓
Dearti		OK Cancel



### 4-8-3. Pathway 情報の表示 [外部サイト]

Scaffold 上では各タンパク質が含まれる Pathway 情報が表示されるのみにとどまります。Pathway の 詳細情報については、公開元の WikiPathways または Reactome サイト上で確認することになります。 両サイトへのリンクは Scaffold の Samples 画面下部、「Protein Information」pane と「Annotation」 pane にあります。

Similarity Quantify Publish Statistics	Bio View:     Bio View:     Bio View:     Bio View:     Bio View:     Constant Constant Constants     Constants	Chic PE=1 SV=3         OLH           Valy PE=1 SV=1         ACL           X000 GH=TubbS PE=1 SV=1 (TBE5 MOUSE)         TBE8           X0=10000 GH=TubbS PE=1 SV=3         EAP           X0=10000 GH=TubbS PE=1 SV=2         EAP           X0=10000 GH=TubbS PE=1 SV=2         EAP           X0=10000 GH=TubbS The SV=2         EAP           X0=10000 GH=TubbS The SV=2         EAP           X0=10000 GH=TubbS The SV=2         EAP           X0=000 GH=TubbS The SV=2         EAP           X0=000 GH=TubbS The SV=1         GAN           X0=0000 GH=TubBS The SV=1	T MOUSE (1) 1 MOU	Q         a         a         a           Q         a         a         a           Q         a         a         a           Q         a         a         a           Q         a         a         a           Q         a         a         a           Q         a         a         a           Q         a         b         a           Q         a         b         a           Q         a         b         a           Q         a         b         a           Q         a         b         a           Q         a         b         a           Q         a         b         a           Q         a         b         b         a           Q         a         b         b         a           Q         a         b         b         a           Q         a         b         b         a           A         a         b         b         a           A         b         b         b         a           a
2373 Proteins at 99.0% Minimum 5 Min # Peptides 6.3% Decoy FDR 214497 Spectra at 0.0% Minimum 1.23% Decoy FDR	Protein Information Lookup Identifier Im (WiRPathwaye (e.g. Gene Name) ~	Arrotation Pathways Prior disease pathway (Homo sapiens) Protodynamic therapy-induced unfolded protein respons ATFR (ATFR-alpha) activates chaperone genes (Homo s	se (Homo sapiens) apiens)	Sample Information. Biological Sample: Sample Category. Sample Description MS/MS Sample Notes:
Protei	in Information: up Identifier In: WikiPathways (e.g. Gene Name) BIP_MOUSE Hspa5	Annotation Pathways Prion dise Photodyn ATF6 (AT	ease pathway amic therapy- IF6-alpha) act	(Homo sapiens) induced unfolded protein response (Homo sapiens) ivates chaperone genes (Homo sapiens)

左側の「Protein Information」にある gene name (または Accession)ボタンをクリックすると、該当タンパ ク質でサイト上にて検索した Pathway 一覧が表示されます(下図)。

ARE AND	special		2	.og in / create account
	Find pathways			
BETA WIKIPATHWAYS	Search for: Hspa5	ALL SPECIES	▼ Search	
Pathways for the People	Tip: use AND, OR, *, ?, parentheses or o	quotes		
	11 pathways found			
Help     About us     Contact us     Report a bug     How to cite download				
<ul> <li>Download files</li> <li>Web service API</li> <li>WikiPathways</li> </ul>	Photodynamic therapy-induced unfolded protein response (Homo sapiens)	ATF6 (ATF6-alpha) activates chaperone genes (Homo sapiens)	Unfolded Protein Response (UPR) (Homo sapiens)	
Embed code	Mile the control of the cont			
activity  Browse pathways Recent changes New pathways				
- Edit asthurus				

また真ん中の「Annotaion」paneには、検索項目でマッチした Pathwayの項目リストがあり、それぞれの ハイパーリンクをクリックすると該当 Pathway が表示されます。

Pathwayの中で該当タンパク質がどの位置に存在するかについては、表示されたWEBページ内の検索で該当タンパク質名を探してください。



「Protein Information」または「Annotation」 pane についての詳細は、「**3-2-4**. Information Panes: タンパク質・サンプルに関する追加情報」も併せてご確認ください。

[次頁に続く]

# **4-9.** ツールバーアイコン

使用頻度が高い項目については、画面左上にアイコンが準備されています。ほとんどのアイコンは メニューに同じ項目があります。

アイコン	説明
	・New - ファイル作成ウィザードを起動します。詳細は2章「MASCOT 結果取り込み」をご覧
	ください。
**	・Bach Job Queue Dialog – Scaffold Batch の実行ダイアログを表示。このアイコンは
¥	Scaffold Batch のライセンス購入時のみ表示されます。
<b>11</b>	・Open - Scaffold のファイル(.sf3)を開きます。
	・Save - 今開いている sf3 ファイルを保存します
4	・Print - 現在開いている view 画面を印刷します。
2	・Print Preview – 印刷の preview を表示します。
	・Copy - 選択時に開いている view のデータをそのままクリップボードにコピーします。タ
	ブ区切りのデータとなります。
æ	・Find - 検索用のダイアログを開き view から該当項目を探します。
*	・Excel - 現在の View 画面情報について、CSV フォーマットで出力。Export- current view
	と同じ。
<b>B10</b>	・BioSample Summarization level – データを BioSample 単位にまとめた表示に切り
	替えます。
MS	・MS/MS Sample Summarization level – データを Experiment (MS/MS Sample)
	単位にまとめた表示に切り替えます。
4	・Add BioSample – BioSample を追加。「Load Data」view→「Add BioSample」と同じ操
	作(ダイアログ出現)
	・Queue Files For Loading – Experiment を追加。「Load Data」view→「Queue Files
	For Loading」と同じ操作(ダイアログ出現)
<u></u>	・Load and Analyze Queue - 「Load Data」View にて Experiment と BioSampleの紐
	づけが完了しているものの、Experiment の取り込みが未完了な状態の場合、取り込みを開
_	始します
	・Quantitative Analysis – 定量解析(検定)を行います。詳細は「」
Q+	・ <mark>Scaffold Q+/Q+S</mark> - Q+/Q+S モジュールを起動します。
۲	・ <b>Help</b> – Online help を起動します。

## 5. Load Data View

### 5-1. 概要

Scaffold では各種機能を持つ View があり、画面左側にそれらの View を切り替えるためのスイッチがあります。5 章では「Load Data」View について説明しています。

「Load Data」View では現在取り込んでいるデータの BioSample に関して MS Sample データを追加/ 削除 したり、BioSample 自体を追加/削除 する事ができます。



以降 Load Data View 画面について、上図で示す4つのパーツ、

- Experiment pane
- BioSample tabs と、Load and Analyze Queue button
- Information pane

に分けて説明していきます。

### 5-2. Experiment pane

View 画面上部、「Experiment pane」(下図)では Scaffold で取り込んでいるデータに関する概要を 確認する事ができるほか、BioSample*や MS Sample の追加を行う事ができます。

* BioSample … (MS) sample データをまとめた、1 つ上の階層単位。詳細は「2-1. 概要、結果ファイルの階層構造」をご確認ください。

tutorial_6 1366 Spectra	🚑 Queue Files For Loading	🚑 Queue <u>S</u> tructured Directories	🎄 Add BioSample
🔄 Protein Grouping: Experiment Wide			

Experiment pane 左側は Experiment の名称 (sf3 ファイルの名称)や取り込んだスペクトルの総数、 タンパク質のグループ化の設定が表示されています。

右側には3つのボタンがあります。

#### **•Queue Files For Loading**

現在選択されている BioSample に、新たに MS Sample を加えます。加える MS Sample が 1 ファイルの時に使用します。

#### **•Queue Structured Directories**

現在選択されている BioSample に、新たに MS Sample を加えます。加える MS Sample が フォルダ構造になっている時に使用します。

#### ·Add BioSample

BioSample を追加する時に利用します。

以下内容の関連項目として、2章の「MASCOT 結果取り込み」も併せてご参照ください。

- MS Sample, BioSample, Category (2-1. 概要、結果ファイルの階層構造)
- データの取り込み操作 (2-2, 2-3, 2-4)

## 5-3. BioSample tab $\succeq$ Load and Analyze Queue button

Load Data View の主体部分では、BioSample 別にタブで構成された画面が表示されています(下図)。 タブにはBioSample名が、そのすぐ下にはスペクトル数と(BioSampleより上位に位置する)Category名 が表示されています。その下の行には以下2つのオプションの現状について表示されています。

- データのまとめ方(標準か MUDPIT 設定か)
- スペクトルデータの扱い (condense 設定)

👹 Scaffold Evaluation	n - Load Data - tutor	ial_6							_	
<u>File Edit View Experin</u>	ment Export Quant	<u>W</u> indow <u>H</u> elp								
	► AA 🖷 💾 🏙	🗼 👒 🦛 🌆 Protein	Threshold:	99.0%	∕∕Min # P	eptides:	2 >	Peptide Thre	shold:	95% ~
BioSample Ø	terial 6 1366 Spec	stra periment Wide	🛱 Quei	ue Files For L	oading	🙀 Queus	: <u>S</u> tructured (	Directories	🗼 Add E	BioSample
Load Data	Int-1 Int-2 Int-2	r-1 🖵 Un-2								
Samples	t-1 480 Spectra I Standard sample: eac Condensing off: keep a les in Loading Queue	nt h file will be analyzed separa all unmatched spectra for fut	tely :ure export		[	Files Currer	tly Loaded			
Proteins		BioSample に 取り込み予定の	D結果			Mascot CHI191 (FO CHI191 (FO	05229) 05230)	BioSar 取り込	nple に み済の	: 結果
				Load Cua	and lyze eue					
Quantify Publish										
Statistics	Analysis Information:		Fixed Modific:	ations:			⊤Variable Mi	odifications:		
44 Drataine at	Peptide Tolerance:	0.30 Da (Monoisotopic)	Modification		Mass	AA	Modificati	n	Mass	AA
99.0% Minimum 2 Min # Peptides 0.0% Prophet FDR 163 Spectra at 95.0% Minimum	Fragment Tolerance: Digestion Erzyme: Searched Database: Original Search Date:	0.20 Da (Monoisotopic) Trypsin the NCBInr_20050928 data Mascot=10/12/2005	Carbamidom	ethyl (Iodoac	57.02	C	Deamidatio Deamidatio Oxidation	on	0.98 0.98 15.99	N Q M
1.26% Prophet FDR	Scaffold Version:	Scaffold_3.0-pre63								

その下に続いている左右二つの表ですが、画面の右側の表「Files Currently Loaded」が現在 BioSample に取り込み済みの MS Sample を表しています。一方左側の表「Files in Loading Queue」は、追加は されていないが追加されるように設定されている MS Sample を表しています。左側に項目がある状態で、 真ん中のボタン「**Load and Analyze Queue**」を押すと、データの取り込みを開始します。

左右どちらの表に含まれる MS Sample も、右クリック→Remove とすることで取り除く事ができます。 特に右側の「Files Currently Loaded」のデータを取り除くと、各種再計算が自動的に実行されます。

## **5-4. Information pane**

Load Data Viewの下部にある表示が「Information pane」です。

左から順に「**Analysis Information**」「**Fixed Modifications**」「**Variable Modifications**」の sub pane から構成されています。

検索条件	<mark>+</mark>	修飾(缶	xed)		修飾(	variable)	I
Analysis Information:-		Fixed Modifications:			Variable Modifications:		
Peptide Tolerance:	0.30 Da (Monoisotopic)	Modification	Mass	AA	Modification	Mass	AA
Fragment Tolerance:	0.20 Da (Monoisotopic)	Carbamidomethyl (Io	doac 57.02	С	Deamidation	0.98	N
Digestion Enzyme:	Trypsin				Deamidation	0.98	Q
Searched Database:	the NCBInr_20050928 datab	c			Oxidation	15.99	M
Original Search Date:	Mascot=10/12/2005						
Scaffold Version:	Scaffold_3.0-pre63						

#### Analysis Information では、検索に関する条件が表示されています。

Fixed Modifications 並びに Variable Modifications では、検索時に指定した修飾に関する情報が記されています。

各種表示は、BioSample tab 内の Files Currently Loaded で MS Sample が指定されている場合、 選択 Sample での情報が表示されます。何も選択されていない場合はすべての sample について該当項目 が列挙される形で表示されます(ただし通常は検索条件がすべて同じデータを取り込むケースがほとんで あると考えます)。

# **6. Protein View**

## 6-1. 概要

Scaffold では各種機能を持つ View があり、画面左側にそれらの View を切り替えるためのスイッチがあります。

6章では「Proteins」View について説明いたします。

各タンパク質に関する詳細な情報、例えばタンパク質全長に対してアサインされた同定ペプチドの分布 状況であったり、マッチしたペプチドの MS/MS マススペクトルとのマッチング状況を確認したりといった 事は、「**Proteins**」View で行います。

Proteins View は、主に3つのパーツで構成されています。

左上の「Proteins Pane」では同定タンパク質に関する様々な情報を表示しています。

右上の「**Peptides Pane**」では、同定タンパク質にアサインされているペプチドに関する様々な情報を表示して、Proteins Paneの選択項目と連動しています。

画面下部の「**Spectrum Pane**」では、Proteins/Peptides pane で選択している内容に関連する 各種図/グラフ が表示されます。以降各 pane についてより詳しく説明しています。

<u>67</u>				Scaffold O	-S - Proteins -	tutoria	12							- 0 ×
File Edit View Experim	ent Export Quant Window Hel	b												
L) 💕 🖩 🎒 R	( 🗈 🗚 🐮   🎬 😘	r 義 👒 🖑 📠 👷 Pro	tein Threshold:	99.0% v Min # Peptides: 2	✓ Peptide Three	hold:	95%	v @						
								-1			1	1	_	
	All Proteins		<ul> <li>All Biological Sar</li> </ul>	nples	v -	Valid	Se	quence	Prob	Mascot Ion s	Mascot Identity	Mascot Delta Ion Sc.	X! Ta	NTT Mor
	a	0		l holes a		-	1.0 (R)	FKDLGEEHFK(G)	100%	39.6	44.2	15.1	4.96	2 ^
Communication of the second se	Sequence Coverage	Protein Accession C	ategory Bio S	ampie MS/MS Sample	P	-	1.0 (K)	GLVLIAFSQYLQQCPFDEHVK(L)	100%				6.72	2 Cart
Load Data		Serum albu ALBU_BOVIN AA	c1		^		1.0 (K)	GLVLIAFSQYLQQCPFDEHVK(L)	100%	55.3	40.6	51.3	8.35	2 Cart
		Serum abu ALBU_BOVIN AA	C2				1.0 (K)	GLVLIAF5QYLQQCPFDEHVK(L)	100%	39.5	39.9	38.1	6.29	2 Cart
		Serum abu ALBU_BOVIN BB	C3			<u> </u>	1.0 (K)	GLVLIAFSQYLQQCPFDEHVK(L)	100%				3.15	2 Cart
Por at		Serum albu ALBU_BOVIN BB	C4			<u> </u>	1.0 (K)	GLVLIAFSQYLQQCPFDEHVK(L)	100%	15.7	41.0	8.5	1.64	2 Cart
Viel 1		Serum abu ALBU_BOVIN CC					1.0 (K)	LVNELTEFAK(T)	100%	37.1	44.1	22.3	2.42	2
Samples		Serum abu ALBU_RABIT AA					1.0 (V)	NELTEFAK(T)		_			2.52	1
Gampies		Serum abu ALBU_RABIT AA	D	A star Deserve			1.0 (K)	TCVADESHAGCEK(S)	-	Ponti	log Pa	no	6.25	2 Cart
		Serum albu ALBU_RABIT_BB	- <b>Pro</b>	teins Pane			1.0 (K)	TCVADESHAGCEK(S)	_	r ehm	ree r a	116	5.40	2 Cart
		Serum albu ALBU DABIT CO					1.0 (K)	SLHTLFGDELCK(V)		24.4		27.0	5.19	2 Cart
1 All		Serum albu ALBU PIG A/			_		1.0 (K)	SLHTLFGDELCK(V)	100%	21.5	41.9	27.0	5.40	2 Cart
CIM		Serum abu ALBU DIC AA					1.0 (K)	SLHTLFGDELCK(V)	100%	31.5	41.9	17.6	3.40	2 Cart
Proteins		Serum abu ALBU PAT AA					1.0 (k)	SUHTLPGDELCK(V)	100%	52.4	41.7	49.0	5.17	2 Carl
		Serum abu ALBU PAT CC					1.0 (R)	ETYGDMADCCEK(Q)	100%	31.7	41.7	20.1	4.05	2 Carl
		NE0005026 OTRE CONTR A4					1.0 (R)	ETYGDMADCCEK(Q)	100%	51.7	41.7	20.1	2.32	2 001
		NE0005026 OTRE CONTR A4					10 (K)	QEPERNECPLSHKDDSPDLPK(L)	100%				1.47	2 Carl
		NE0005026 OTRE CONTR BE					1.0 (N)	VERENECEDSHODSPDLPK(L)	100%	48.1	47.6	40.4	6.30	2 Carl
Fred Re P		NE0005026 OTRE CONTR BE	c4				10 (K)	LKRODNITL CDEEV(A)	100%	29.9	43.4	9.3	6.20	2 Carl
Similarity		NE0005026 OTRE CONTR CO	c5				10 (k)	LKPOPNIEGDEFK(A)	100%	22.4	41.8	12.9	4 54	2 Carl V
		Beta-lactori LACB BOVIN AA	c1			<								>
	Protein Sequence Similar Protein	s Coactrum Coactrum Model Erro	Fragmentation	Table										^
	Sinis Protein	a apeca ann apeca ann houer bho	ringmentation	Table										
	ALBU_BOVIN (1	00%), 69,294.2 Da												
Quantify	Serum albumin	precursor (Allergen Bo	sd 6)											
	35 exclusive u	nique peptides, 54 exclu	sive unique :	spectra, 82 total spectra, 42	6/607 amino a	icids (7	70% cov	(erage)						
<b>=</b>			•					• /						
. 📰 🛄	MKWVTE		AVSPG	VEDDDTHKSE		K D I	C F	EHEK CIVII		SOVIO		הבעעגוע	NEL	
( (23)			ATSKO		VACLD	E T X								
		CVAD ESHAG	KEWOK	HILFGDELCK	VASLR	E		MADCCER	<u>. r</u>	RNEC	LSHK		N D D	
Publish	PDPNIL	CDEF KADEK	K F W G K	TLTEIARRHP	TETAP			AN			L L		MRE	
	K V L A S S	ARUR LRUAS		ERALKAWSVA	RLSUK	r P P	AE	Sport	707 7 20	n Don		GDLLECA	DDR	
•	ADLARY	ICDN QDIIS	SKLKE	CCDKPLLEKS	HCTAE	VER	DA	pect	rui	u ı aı		NYUEAKD	AFL	
	GSFLYE	YSRR HPEYA	VSVLL	RLAKEYEAIL	EECCA	KDL	рын	AC -			-	IKQNCDQ	FEK	
	LGEYGF	QNAL IVRYT	R K V P Q	<mark>V S T P T L V E V S</mark>	RSLGK	VGI	T R C	CIKPESER	лр с	TEDYL	SLIL	N R L C V L H	EKT	
	PVSEKV	TKCC TESLV	NRRPC	FSALTPDETY	<b>VPK</b> AF	DEP	< L F	TFHADICT	. P [	<b>ТЕК</b> Q I	к <mark>кот</mark> ,	ALVELLK	НКР	
Statistics	KATEEQ	LK <mark>TV</mark> MENFV	AFVDK	C C A A D D K E A C	FAVEG	PKL	_ V V	STQTALA						
21 Proteins at														
99.0% Minimum														
2 Min # Peptides														
0.0% Decoy FDR														
1359 Spectra at														
95.0% Minimum														
0.00% Decoy FDR														~
	L													· ·

## 6-2. Proteins pane : タンパク質に関する情報を表示

Proteins View の左上、Proteins pane では、同定タンパク質に関する情報が表示されます。画面上部 に左右2つのプルダウンメニューがあります。

左はタンパク質一覧、右は BioSample/MS Sample 一覧です(下図)。

タンパ	ペク質一!	覧			1	BioSa	mple	/ MS	Sam	ple –	·覧	
Keratin, type I cytoskeletal	10 (Cytokera	tin-10) (CK-1	10) (Keratin-	10) 🝸 All	Biological S	Samples						
Sequence Coverage	Protein	Accession	Category	Bio Samp	MS/MS	Prob	%Spec	#Pep	#Uni	#Spec	%Cov	m.w.
	Keratin, ty	gj547749	Int	Int-1		100%	3.5%	9	11	17	13%	60 kDa
	]Keratin, ty	gi 547749	Int	Int-2		100%	3.9%	10	10	16	16%	60 kDa
	Keratin, ty	gi547749	Un	Un-1		100%	2.8%	6	6	8	8.6%	60 kDa
	]Keratin, ty	gj547749	Un	Un-2		100%	0.53%	1	1	1	1.7%	60 kDa

右の一覧がBioSampleか MS Sampleかは、選択している表示モードによります。すべての項目につい て選択・表示するか、個別のタンパク質、個別のBioSample/MS Sample に対して表示を行うかを選択す る事ができます。



プルダウンの下には同定タンパク質に関する各種情報が表としてまとめられています。 表の各項目についてはそれぞれ以下の通りです。

#### Sequence Coverage

タンパク質の全長に対して、マッチしたペプチドの箇所を一瞥して確認できる表示です。枠内域がタンパ ク質全長を、黄色の領域がマッチしたペプチドの箇所を、緑の領域が修飾部位を表しています。タンパク 質が各 BioSample / MS Sample でどのようにマッチしているかを比較する際に利用します。

• Protein

タンパク質の description (短めの機能説明文)

#### Accession

タンパク質の Accession number

Category

属している Category 名

- •BioSample
  - 属している BioSample名

#### •MS/MS Sample

データの MS sample 名

```
•m.w.
```

タンパク質の質量

·Prob.

protein probabilityの数値。prefiltered mode で取り込んだ場合は表示されません。

•%Spec.

Sample View  $\mathcal{O}$  Display option にもある、「Percentage of all Spectra」

•#Pep.

Sample View の Display option にもある、「Exclusive unique peptide count」

•#Unique

Sample View の Display option にもある、「Exclusive unique spectrum count」

•#Spec

タンパク質のグループ化(クラスタリング)設定をしている場合、Display option の「Total spectrum Count」を表します。グループ化設定をしていない場合、Display option の「Exclusive Spectrum Count」を表します。列の項目名にカーソルを合わせるとどちらが表示されているか、確認する事ができます。

```
•%Cov.
```

Sequence Coverage ( $\mathcal{O}$ %)

## 6-3. Peptide pane: ペプチドに関する情報を表示

Protein View の右上、Peptides pane では、左上で選択された protein にアサインされたスペクトルデー タに関する情報が表示されています(下図)。



### 表の各項目は以下の通りです。

Valid	Assigned	Sequence	Prob	Masc	Masc	Masc	NTT	Modifications	Obs
$\checkmark$	<ul> <li>Image: A second s</li></ul>	(R)ALEESNYELEGK(I)	100%	67.8	46.8	0.0	2		6
$\checkmark$	✓	(R)ALEESNYELEGK(I)	100%	66.2	46.8	0.0	2		6
$\checkmark$	✓	(R)VLDELTLTK(A)	100%	63.2	47.3	0.0	2		5
$\checkmark$	✓	(R)SQYEQLAEQNR(K)	100%	67.5	46.8	0.0	2		6
$\checkmark$	×	(R)SQYEQLAEQNR(K)	100%	57.9	46.8	0.0	2		6
$\checkmark$	×	(R)SQYEQLAEQNRK(D)	96%	42.0	46.7	0.0	2		- 7
$\checkmark$	✓	(K)DAEAWFNEK(S)	97%	48.2	46.6	0.0	2		5
$\checkmark$	×	(R)LENEIQTYR(S)	97%	48.1	47.0	0.0	2		5

#### •Valid

チェックが入っているデータは protein probability の計算に使用されます。取り込み時のデフォルトでは peptide probabilityの threshold を満たすすべてのデータにチェックが入っています。

#### •Weight/Assigned

単純なグループ化が適用されている場合は該当ペプチドがユニークだと緑のチェック、共有ペプチドだと 赤の十字で表示されます。Clustering (類似タンパク質のグループ化)が適用されている時には該当デー タの weight の数値を表します。ユニークなら 1,シェアならシェア状況に応じて数値が小さくなります。

#### •Sequence

ペプチド配列を表します。前と後ろの()に囲われた部分はペプチド直前あるいは直後のアミノ酸を表しま す。

#### ·Prob.

peptide probability. Prefiltered mode で取り込まれた場合は表示されません。

#### •Search engine scores

検索エンジンごとに表示内容が異なります。

- **SEQUEST** : Xcorr & DeltaCn
- Mascot : Ion score, Identity score, Delta Ion Score
- X! Tandem : Expect 值(log)

#### •NTT

missed cleavage あるいは Number of Tryptic Termini (同じ意味ですが検索エンジンなどで用語が異なります)。

#### Modifications

修飾情報

Observed	Actual M	Char	Delta	Delta	Rete	Intensity	TIC	Start	Stop	# Ot	Other Pr	Spectrum ID
691.30	1,380.59	2	-0.049	-36			27770	166	177	0		Sum of 3 sca
691.31	1,380.60	2	-0.043	-31			4081	166	177	0		Sum of 3 sca
516.30	1,030.59	2	-0.0062	-6.0			4651	258	266	0		Sum of 3 sca
683.31	1,364.61	2	-0.025	-18			3240	323	333	0		Sum of 3 sca
683.30	1,364.59	2	-0.046	-33			16660	323	333	0		Sum of 3 sca
747.32	1,492.62	2	-0.11	-73			13510	323	334	0		Sum of 3 sca
555.23	1,108.44	2	-0.041	-37			1618	335	343	0		Sum of 3 sca
583.30	1,164.59	2	0.0084	7.2			1218	442	450	0		Scan 4796 (rl

#### •Observed

スペクトルデータ側のペプチドの m/z

Actual Mass

ペプチドの質量

•Charge

ペプチドの電荷

•Delta Da

ペプチド質量の差の Da、実測値 - 理論値

#### •Delta ppm

ペプチド質量の差の Da、(実測値 - 理論値) / (実測値)

#### **·Retention Time**

LC の保持時間 (秒)。データによっては表示されない

Intensity

ペプチドの Precursor スペクトルでの intensity (面積)。データによっては表示されない。

•TIC

MS/MS 各ピークの intensity の和。

•Start

ペプチド先頭部の、タンパク質全長における位置 (残基番号)。

•Stop

ペプチド末端部の、タンパク質全長における位置 (残基番号)。

#### •# Other Proteins

シェアペプチドの場合、シェアされているタンパク質の数。

#### **•Other Proteins**

シェアされているタンパク質の Accession。

#### •Spectrum ID

スペクトルの名称。

## 6-4. Spectrum pane :タンパク質/スペクトル 関連図

Spectrum pane (英文マニュアルでは Protein Sequence pane)では、proteins pane や peptides pane で選択しているタンパク質やスペクトルに関連する図を表示させることができます。以下5つのタブから構成されています。

- Protein Sequence tab
- Similar Proteins tab
- Spectrum tab
- Spectrum/Model Error tab
- Fragmentation Table tab

以下、各タブの画面について説明しています。

#### 6-4-1. Protein Sequence tab



Protein Sequence tab では、選択しているタンパク質の全長に対して、アサインされたペプチドが どこに位置するのかを表しています。黄色い部分はペプチドがマッチしている箇所、緑のアミノ酸は修飾を 受けていることを表します。また配列の上部にはタンパク質の Accession や Description、質量、アサイン されたペプチド/スペクトル 数、coverage (%)なども表示されます。

またタブ内で右クリックを選択する事で、画像として保存したり関連情報をクリップボードにコピーしたり する事もできます。

[次頁に続きます]

#### 6-4-2. Similar Proteins tab

Similar Proteins tab では、選択しているタンパク質と同様のペプチドマッチをしているタンパク質 (グループ)について、その類似度を確認する事ができます(下図)。グループ内のタンパク質すべてに ついて、左上の Proteins pane と基本的に同じ情報が表示されます。グループ内のタンパク質において、 ペプチドの重なり度合などを確認する事ができます。

Protein Sequence Similar Proteins Spectrum Spectrum	Model Error Fragmentation Table								
Sequence Coverage	Protein	Accession	Prob	%Spec	#Pep	#Uni	#Spec	%Cov	m.w.
	Chain A, Crystal Structure Of The F	irst g 1942351	100%	2.7%	5	6	13	46%	13274
	Chain B, Porcine E-Trypsin (E.C.3.4.)	21.4) g 999627	100%	2.7%	5	6	13	71%	8801
	Chain E, Leech-Derived Tryptase In	nibi <b>g</b>  3318722	100%	2.7%	5		13	26%	23454
	Chain A, Trypsin (E.C.3.4.21.4) Comp	exe gi 494360	100%	2.7%	5	6	13	26%	23455
	Chain A, Complex Of The Second Ku	nit gi 291 4482	100%	2.7%	5	6	13	26%	23457
	Trypsin precursor	g 136429	100%	2.7%	5	6	13	25%	24391

#### 6-4-3. Spectrum tab

Spectrum tab では、画面右上の Peptides pane で選択中のスペクトルデータについて、スペクトル ベースで理論値とのマッチング状況を確認する事ができます(下図)。



スペクトルのグラフはインタラクティブに操作/表示 できます。ドラッグ&ドロップで特定領域を拡大 したり、拡大後にシングルクリックする事で元の表示に戻したりする事ができます。またタブ内で右クリック を選択する事で、画像として保存したりピークリスト情報をクリップボードにコピーしたり、配列を BLAST 検索したりする事もできます。

[次頁に続きます]

#### 6-4-4. Spectrum/Model error tab

Spectrum/Model Error tab では、右上の Peptides pane で選択しているスペクトルデータについて、 理論値と実測値との誤差を確認する事ができます(下図)。縦軸が誤差、横軸はフラグメントの質量(Da)で す。



またタブ内で右クリックを選択する事で、画像として保存したりピークリスト情報をクリップボードにコピーしたり、配列を BLAST 検索したりする事もできます。

#### 6-4-5. Fragment table tab

Fragment table tab では、右上の Peptides pane で選択しているスペクトルデータについて、理論値 ベースで理論値とのマッチング状況を確認する事ができます(下図)。色が塗られているところがマッチした 箇所です。「+2H」は 2 価、「-NH3」「-H2O」は脱アミノ/脱水を表します。またタブ内で右クリックを選択 する事で、画像として保存したりデータをクリップボードにコピーしたり、CSV ファイルに出力する事が できます。

Pr	otein Seq	uence S	Similar Prote	ins Spect	trum	Spectrum/	Model Erro	or Fragme	Fragmentation Table				
в	B Ions	B+2H	B-NH3	B-H2O	AA	Y Ions	Y+2H	Y-NH3	Y-H2O	Υ			
1	114.1	57.5			Ι	2,284.2	1,142.6	2,267.1	2,266.2	20			
2	227.2	114.1			Ι	2,171.1	1,086.0	2,154.1	2,153.1	19			
З	328.2	164.6		310.2	Т	2,058.0	1,029.5	2,041.0	2,040.0	18			
4	465.3	233.1		447.3	Н	1,956.9	979.0	1,939.9	1,938.9	17			
5	562.3	281.7		544.3	Р	1,819.9	910.4	1,802.9	1,801.9	16			
6	676.4	338.7	659.4	658.4	N	1,722.8	861.9	1,705.8	1,704.8	15			
7	823.4	412.2	806.4	805.4	F	1,608.8	804.9	1,591.8	1,590.8	14			
8	938.5	469.7	921.4	920.5	N+1	1,461.7	731.4	1,444.7	1,443.7	13			
9	995.5	498.3	978.5	977.5	G	1,346.7	673.9	1,329.7	1,328.7	12			
10	1,109.5	555.3	1,092.5	1,091.5	N	1,289.7	645.3	1,272.7	1,271.7	11			
11	1,210.6	605.8	1,193.6	1,192.6	Т	1,175.6	588.3	1,158.6	1,157.6	10			
12	1,323.7	662.3	1,306.6	1,305.7	L	1,074.6	537.8	1,057.6	1,056.6	9			
13	1,438.7	719.9	1,421.7	1,420.7	D	961.5	481.3	944.5	943.5	8			
14	1,552.7	776.9	1,535.7	1,534.7	N	846.5	423.7	829.4	828.5	- 7			
15	1,667.8	834.4	1,650.7	1,649.8	D	732.4	366.7	715.4	714.4	6			
16	1,780.9	890.9	1,763.8	1,762.8	Ι	617.4	309.2	600.4		5			
17	1,911.9	956.4	1,894.9	1,893.9	M	504.3	252.7	487.3		4			
18	2,025.0	1,013.0	2,007.9	2,007.0	L	373.3	187.1	356.3		3			
19	2,138.1	1,069.5	5 2,121.0	2,120.0	Ι	260.2	130.6	243.2		2			
20	2,284.2	1,142.6	5 2,267.1	2,266.2	ĸ	147.1	74.1	130.1		1			

# 7. Grouping,Clustering と Similarity View

Scaffold では各種機能を持つ View があり、画面左側にそれらの View を切り替えるためのスイッチがあります。7章では「Similarity」View について説明しています。また Similarity と関連がある内容として、 Scaffold にて Group 化、Clustering 化する際のルールについても併せて説明しています。

### 7-1. Scaffold での類似タンパク質の扱い

質量分析データベースのプロテオミクスの解析ではスペクトルデータを元にペプチド配列を同定します。 そしてそのペプチドがどのタンパク質に含まれる配列と同じかという情報を元に同定タンパク質をリストア ップします。検索対象のデータベース中に、同定ペプチドをシェアするタンパク質が複数存在する事は頻繁 に起こります。

ヒットしたペプチドの組み合わせが全く同じ、mascot で「**same-set**」と呼んでいる組み合わせを、 Scaffold では「**protein group**」と呼んでいます。Samples リストの中で Accession の表示の後ろに() がありその中に+数字、と表示されているものがこれに該当します(下図)。



same-set より下位、ヒットしたペプチドにオリジナルのペプチドがなく、他により多くのペプチドがマッチ しているタンパク質が存在するケースを MASCOT では「**sub-set**」と呼んでいます。Scaffold では sub-set のデータは Samples View の同定タンパク質リストに現れず、後述するように Similarity View の「No group」に一緒くたにされてしまいます。

ー方シェアするペプチドを持ちながら、他のタンパク質にはアサインされていないユニークなペプチドを もつタンパク質もあります。MASCOT ではこれらタンパク質はすべて「**Family Protein**」としてまとめら れます。取り込み時のグループ化アルゴリズムの選択にもよりますが、Scaffold ではユニークペプチドのみ ならずシェアペプチドの確からしさに基づいて、クラスター(Cluster)としてまとめられるケースと、リスト中 の他のタンパク質にシェアペプチドが存在する事を示すにとどまるケースがあります。 以降 7 章では、グループ化や Clustering の手法について説明しています。

### 7-2. 表示内容の詳細 : summary 画面

Scaffold 4 以降では「Share peptide Grouping」というグループ化・クラスター化のアルゴリズムを適用 する事ができます。Scaffold 3 以前で扱われていた内容については「Legacy Protein Grouping」と呼ん でいます。

「Share peptide Grouping」の方法は、従来の方法で求められていた、「高い同定確率であるペプチドが

『ユニーク』に存在する」という条件適用にこだわると同定タンパク質リストから抜け落ちてしまうような タンパク質を救済する事を第一の目的としたアルゴリズムです。

データ取り込み時に「Protein Grouping」というオプションで「Use protein cluster analysis」という選択 肢を選ぶことでこのアルゴリズムが適用可能です(下図)。

Load and Analyze Data
Searched Database:
uniprot_sprot_mouse_20121129 FASTA Database (2)
Use non-default forward/decoy ratio: No Decoys 👻
Add New Database
-XI Tandem:
Analyze with XI Tandem
Scoring System:
<ul> <li>Use LFDR scoring (all instruments)</li> </ul>
<ul> <li>Use legacy PeptideProphet scoring (high mass accuracy)</li> </ul>
<ul> <li>Use legacy PeptideProphet scoring (standard)</li> </ul>
Protein Grouping:
Use protein duster analysis
Use standard experiment wide protein grouping
Use legacy independent sample protein grouping
Protein Annotations:
<ul> <li>Don't annotate (No download required)</li> </ul>
Fetch GO annotations remotely (UniProt, IPI, NCBI; ~20 mins every time)
(Configure GO Source)
✓ Previous Load Data Done Cancel

他の選択肢を選んだ場合でも、データを取り込 んだ後に変更することができます。

メニューの Experiment -> Edit Experiment に て現れるダイアログにて、ラジオボタン上の 選択 肢にて「use protein cluster analysis」の項目を 選び、「Apply」ボタンを押す事で変更可能です(右 図)。

I Edit Experiment
Experiment Description:
Protein Grounina:
Use protein cluster analysis
O Use standard experiment wide protein grouping
Use legacy independent sample protein grouping
Help     Apply     Cancel

以降、このグループ化並びにクラスター化の アルゴリズムの説明のため、内容をさらに以下3つのパート にわけて説明します。

- •7-2-1. Protein Grouping (same-set)
- •7-2-2. Protein Paring (sub-set)
- •7-2-3. Protein Clustering (Family protein)

#### 7-2-1. Protein Grouping (same-set)

ヒットしたペプチドの組み合わせが全く同じ、mascot で「**same-set**」と呼んでいる組み合わせを、 Scaffold では「**protein group**」と呼んでいます。前述のように、group に複数のタンパク質を含む場合、 Samples view にて Accession の後ろに()と+数字、と表示されます(下図)。

0/01019/0	-			9 40	
	5	e e	5	ර් 🚬 🗌	
Bio View:	-8	de la	8	<u> </u>	8
2793 Proteins in 2524 Clusters	Ä			8 B	8
$\frac{3}{6}$ With 12 Decovs and 6 Filtered Out	Ŭ	E F	- <u>-</u>	원 중	୍ୟ
NADH dehvdrogenase [ubiquinone] 1 alpha subcomplex suNDU	A9 MOUSE	Ndufa9	43 k̄Da'	13	6
Arginine—tRNA ligase, cytoplasmic OS=Mus musculus OX_ISYO	O MOURE	Pars	76 kDa	6	9
Calmodulin-1 OS=Mus musculus OX=10090 GN=Calm1 PE CAL	MI MOUSE (+2)	alm1	17 kDa	7	7
Adenvivi cyclase-associated protein 1 OS=Mus musculus CAP	TINOUSE	Capl	52 kDa	10	9
Elongation factor Tu, mitochondrial OS=Mus musculus OX EFT				9	10
Cluster of Calcium/calmodulin-dependent protein kinase KCC	2B MOUSE [4] CAP	1_MOUSE	(Da	+ 6	10

Accession Number のところをクリックすると、group に含まれるタンパク質が表示され、その中から選択する事でリストに表示される Accession を変更することができます(下左図)。また Samples View 下部の「Protein Information pane」でもグループに属するタンパク質を確認する事ができます(下右図)



グループに属するタンパク質と、そのタンパク質に帰属するペプチドについて着目すると、ペプチドは以下の2種類に大別する事ができます。

- シェアペプチド ... 複数タンパク質にアサインされるペプチド
- ユニークなペプチド ... 単一のタンパク質にアサインされているペプチド

シェアペプチドについてはタンパク質によって配分比率が計算され、確率の計算などにはその配分 比率 が適用されます。配分比率自体はタンパク質の存在が確からしいほど高くなるような計算式になっていて、 主にユニークなペプチドを使って計算します。 タンパク質 A における ペプチド p の配分比率 Weight W (p,A) は、以下の式から算出します。

$$W(p, A) = \frac{PE_{excj}(A)}{\sum_{All(B \supseteq p)} PE_{excj}(B)}$$

分子(numerator)である PE_{excl}(A) とは、A にアサインされているすべてのユニークペプチド X の同定確率 Px を足し合わせたものです(下式)。

$$PE_{excl}(A) = \sum_{X \subset A} P_X$$

分母(denominator)が意味するところは標準化です。PE_{excl}(A)と同様ユニークペプチドの probability 和 を、ペプチド p がアサインされているすべてのタンパク質でさらに足し合わせ、その数字で割ると いう標 準化を行っています。すなわち、他のタンパク質に比ベユニークペプチドの数が多く その probability が高いと配分比率も高くなるようになっています。

計算された配分比率は Similarity View の画面内で表示されます(下図)。

Myog	lobin												
						luster o	f Myogla	obin (MY	G_HORS	E)	Cluste	No Grou	qt
dex	Pantida	Brok	Evolucino To	bila	/G_HORSE (+1)	/G_CASFI	/6_GALCR (+2)	/6_OCHPR	/G_ORVAF	VG_RABIT	/G_GLOME (+2)	/G_ELEMA (+2)	
		100%	EXClusive To		0.76	0.02	2	0.11	2	0.11	2	2	
	ALFIED	100%		V	0.70	0.02	0.00	0.11	0.00	0.11	0.00		
2	ALELFR	33%		$\checkmark$	0.63	0.01	0.09	0.09	0.09		0.09	-	_
3	ETLEKFDKFKNLKSEDEMKGS	100%	Myoglobin	1				1.00					
4	GDFGADAQGAMTK	100%	Myoglobin	1	1.00								
5	GLSDGEWQQVLNVWGK	100%	Myoglobin	V	1.00								
6	HGTVVLTALGGILK	100%	Mvoalobin	V	1.00								

### 7-2-2.Protein Pairing(sub-set)

same-setのデータは groupとしてまとめらますが、ペプチドのアサイン状況が sub-set,包含関係的に下 位に位置する状況、の場合、group にはまとめられず Similarity View でのみ確認する事ができます。 Similarity View の画面右側、「No Group」にまとめられています(次頁図)。

Histo	ne H2A type 1-B/E OS=Homo sa	piens GN	=HIST1H2AB PE=	1 SV	=2						
					Cluste	Cluste	.Cluste	Cluste	No Grou	p	
Index	Peptide	Prob	Exclusive To	Valid	H2A1B_HUMAN (+14)	H2A1D_HUMAN (+18)	* H2AV_BOVIN (+21)	* H2AZ_CANAL (+1)	H2A1A_HUMAN (+25)	H2A1_CANAL (+30)	H2A1_ASHGO (+40)
1	ATIAGGGVIPHIHK	52%	Histone H2	$\mathbf{\nabla}$			1.00				
2	HLQLAIR	80%		$\checkmark$	0.39	0.39	0.21	0.01	-	_	-
3	HLQLAIRNDEELNK	100%		$\checkmark$	0.50	0.50			-	_	
4	NDEELNKLLGK	100%	Histone H2	~		1.00					
5	NDEELNKLLGR	100%	Histone H2	$\checkmark$	1.00						
6	VTIAQGGVLPNIQAVLLPK	100%		$\checkmark$	0.50	0.50					

### 7-2-3.Protein Clustering (Family Proteins)

MASCOT では、同定基準を超えるシェアペプチドが1つでも存在すれば Family Protein としてまとめ られます(下記条件 1)。一方 Scaffold の Protein Clustering のアルゴリズムではそれよりも厳しい条件 (下記条件 2)があり、シェアペプチドが一定の基準を超えていなければなりません。

クラスター化のルールは以下の通りです

- * 英文マニュアルと記述の構成が少し異なりますのでご注意ください
- 1. シェアペプチドの probability 値の和が 95% 以上である
- 2. シェアペプチドの probability 値の和が、シェア並びにユニークペプチドの probability 値の和に対して 50% 以上である。
- 3. 1,2 の条件をすべて満たすタンパク質同士で Family が構成される

なお、Cluster 形成を検討する段階では Samples Filter の各種条件は検討されません。Cluster 形成後、 filter が適用され、Samples 画面に表示されるかどうかが決まります。下記資料に、計算例も含めた説明 がございます。

https://proteomesoftware.zendesk.com/hc/en-us/articles/115001221723-Protein-Grouping -and-Clustering-in-Scaffold

Cluster は、Samples 画面にて Row number の横に十字アイコンが表示され、名称も「Cluster of ~」 と表示されています(下図)。Accession の後ろには、Cluster に属するタンパク質の数も[N]の形で表示 されています。

T	207	
	295	🖉 😭 Adenylyl cyclase-associated protein 1 OS=Mus musculus CAP1_MOUSE
	296	🖊 🕁 Elongation factor Tu, mitochondrial OS=Mus musculus OXEFTU_MOUSE
	<b>±</b> 297	🖊 🕁 Cluster of Calcium/calmodulin-dependent protein kinase KCC2B_MOUSE [2]
	298	🖊 🕁 Transport and Golgi organization protein 1 homolog OS= TGO1_MOUSE
	± 299	Cluster of Creatine kinase B-type OS=Mus musculus OX=KCRB_MOUSE
	300	🖊 🕁 Aldo-keto reductase family 1 member A1 OS=Mus muscul AK1A1_MOUSE
	301	🛿 🎡 Dynamin-1-like protein OS=Mus musculus OX=10090 GN= DNM1 L_MOUSE

Cluster の Accession number のところをクリックすると、Cluster で表示する代表タンパク質の Accession に関して選択する事ができます。

十字ボタンをクリックするとその下に展開し、Cluster に属するタンパク質が一覧で表示されます(下図)。

	29	5	$\langle \cdot \rangle$	Ademylyl cyclase-associated protein 1 OS=Mus musculus CAP1_MOUSE
1.			Ě	
IE	- 29	7	$\checkmark$	Cluster of Calcium/calmodulin-dependent protein kinase KCC2B_MOUSE [2]
	-	297.1	<	Calcium/calmodulin-dependent protein kinase type II KCC2B_MOUSE
	l	297.2	$\checkmark$	☆ Calcium/calmodulin-dependent protein kinase type II KCC2D_MOUSE
	29	8	$\checkmark$	🕆 Transport and Golgi organization protein 1 homolog OS= TGO1_MOUSE
E	29	9	$\overline{}$	Cluster of Creatine kinase B-type OS=Mus musculus OX=KCRB_MOUSE
	30	0	$\checkmark$	Aldo-keto reductase family 1 member A1 OS=Mus muscul AK1A1_MOUSE

メニューの View -> Show Entire Protein Clusters を選択すると、Samples 画面の各種 Filtering 条件 を満たさないタンパク質がグレーアウトの形で表示されます(下図)。ここからも、Family の形成には Samples の Filtering 条件は関係ないことがわかります。

		_
⊒ 297	Cluster of Calcium/calmodulin-dependent protein kinase KCC2B_MOUSE [4]	
297.1	🖞 💮 Calcium/calmodulin-dependent protein kinase type II KCC2B_MOUSE	
297.2	🖞 🖞 Calcium/calmodulin-dependent protein kinase type II KCC2G_MOUSE	
297.3	🖞 💮 Calcium/calmodulin-dependent protein kinase type II KCC2D_MOUSE	
297.4	🖞 🕁 🛛 Calcium/calmodulin-dependent protein kinase type II KCC2A MOUSE	
298	🖞 🕆 Transport and Golgi organization protein 1 homolog OS= TGO1_MOUSE	
± 299	Cluster of Creatine kinase B-type OS=Mus musculus OX=KCRB_MOUSE [2]	
300	🖞 👷 Aldo-keto reductase family 1 member A1 OS=Mus muscul AK1A1_MOUSE	

Samples View などで表示される数字について、Cluster では個々のタンパク質とは内容が異なります。 例えば下図をご覧ください。丸と A,B,C がタンパク質、丸の中の小さい四角の表示がスペクトルを表し、 タンパク質 B と C がクラスターを構成しているとします。B の Total Spectra は 4、C も 4 ですが B と C のクラスターでは和の 8 ではなく 6 であることに注意してください。シェアされているペプチドはまとめて 1つとカウントされます。



## 7-3. Legacy Protein grouping

ここでは Scaffold 3 以前で利用されていた グループ化のルール(現バージョンでも Legacy Protein grouping と呼ばれているルール)について説明しています。

Legacy Protein grouping ルールが適用されている場合でも、Similarity Viewの表示はほとんど変わりませんが、各セルの数値が Weight でなく 同定確率 probability である点が異なります(下図)。

1		• • • • •		1.44		_								L		
Seru	m albumin precursor (Allergen Bo	s d 6)														
				Serum a	albumi	Seru	Seru	Seru	No Grou	р						
ndex	Pentide	Exclusive To	alid	NINO9 ⁻ UBU	LBU_CONTR	ALBU_PIG	LBU_RABIT	ALBU_RAT	LBU_SHEEP	UMACMU	LBU_CANFA	ABU_FELCA	1.150 HUMAN	LBU_HORSE	ITEN MORE	ETA_HORSE
1	AADKDNCFATEGPNLVARSKE	Serum albu		a	a	*	a	* 95%	a	a a	4	a	a	. a	4	LL.
2	AATITK		V													(36%)
3	AEFVEVTK	Serum albu	1	100%	100%											
4	AIPENLPPLTADFAEDKDVCK	Serum albu	V	100%	100%											
5	CCAADDKEACFAVEGPK	Serum albu	1	100%	100%											
6	CCTESLVNR		1	100%	100%	(100%)			(100%)	(100%)		(100%)	(100%)			
	CDNQDTISSK	Serum albu	V	62%	62%											
8	DAFLGSFLYEYSR	Serum albu	1	100%	100%											
9	DAIPENLPPLTADFAEDKDVCK	Serum albu	1	100%	100%											
10	DDPHACYSTVFDK	Serum albu	1	100%	100%											
11	DLGEEHFK	Serum albu	1	100%	100%					(100%)						
12	ECCDKPLLEK		1	100%	100%	(100%)	(100%)			(100%)						
13	ECCHGDLLECADDR		1	100%	100%	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	
14	ECCHGDLLECADDRADLAK		1	100%	100%	(100%)	(100%)		(100%)	(100%)	(100%)	(100%)	(100%)	(100%)		
15	ENFVAFVDK	Serum albu	1	29%	29%				(29%)							
16	ETYGDM	Serum albu	1	26%	26%				(26%)							
17	ETVCDMADCCEK	Corum albu		100%	100%				(100%)							

Legacy protein grouping における、ペプチドのタンパク質への帰属方法は以下の通りです。 大まかにいうと、ペプチド帰属はタンパク質の同定の確からしさの大きい方にペプチドを帰属させる、と いうルールとなっています。

そこでまずタンパク質毎に、アサインされたペプチドの probability の和を算出します(下図)。

1	A B	С	D	E	F	G	H	1	1	K	L	M	N	0
1	Inde penice	Exclusive TO	Valid	8115783196	8113279011	813056149	61109055949	6111513661	8122355563	Bil 13989799	BII91092998	Bilasparse	BIRADI	8116915886
2	1 AKWYPEVR		FALSE	9%	9%	9%	9%	9%			9%	9%	9%	
3	2 CVVVGDGAVGK		FALSE	28%	28%	28%		28%	28%		28%			
4	3 DDKDTIEK		TRUE	73%	73%	73%	73%	73%				73%	73%	73%
5	4 GSPQAIK	Chain A, Small G-Protein	TRUE	75%										
б	5 IISAMQTIKCVVVGDGAVGK		TRUE											
7	6 KLTPITYPQGLAMAK	Chain A, Small G-Protein	TRUE	95%			95%	95%	95%	95%	95%	95%	95%	
8	7 LIPITYPQGLAMAK	Ras-related C3 botulinum tox	TRUE		95%	95%								
9	8 LTPITYPQGLAMAK	Chain A, Small G-Protein	TRUE	95%			95%	95%	95%	95%	95%	95%	95%	
10	9 LVPITYPQGLAMAK		TRUE											
11	10 TVFDEAIR		TRUE	95%	95%	95%	95%	95%	95%	95%	95%			95%
12	11 VDSKPVNLGLWDTAGOEDVI	DR	TRUE											92%
13		Sum of probabilities		433%	263%	263%	358%	358%	285%	285%	285%	263%	263%	260%
14			1											
15														

ペプチド単位でデータを眺めた際、シェアされているタンパク質の中で最も probability の和が大きい タンパク質に帰属させます。値が同じタンパク質が2つ以上ある場合はそのすべてに帰属させます。下図で は緑に塗られた箇所が帰属する位置です。

X	Scaffold Table Export.xls														•
.A	В	С	D	E	F	G	н	1	J	К	L	М	N	0	р
1	Pepide	Exclusive TO	Valid	8115783196	81109659A	8111513661	8112356563	BIT 3989799	B191092998	8113279011	813060149	BILAGIA TAP	81123572	8116959861	
2	AKWYPEVR		FALSE	9%	9%	9%			9%	9%	9%	9%	9%		
3	CVVVGDGAVGK		FALSE	28%		28%	28%		28%	28%	28%				
4	DDKDTIEK		TRUE	73%	73%	73%				73%	73%	73%	73%	73%	
5	GSPQAIK	Chain A, Small G-Protein	TRUE	75%											
6	IISAMQTIKCVVVGDGAVGK		TRUE												
7	KLTPITYPQGLAMAK	Chain A, Small G-Protein	TRUE	95%	95%	95%	95%	95%	95%			95%	95%		
8	LIPITYPQGLAMAK	Ras-related C3 botulinum tox	TRUE							95%	95%				
9	LTPITYPQGLAMAK	Chain A, Small G-Protein	TRUE	95%	95%	95%	95%	95%	95%			95%	95%		
10	LVPITYPQGLAMAK		TRUE												
11	TVFDEAIR		TRUE	95%	95%	95%	95%	95%	95%	95%	95%			95%	
12	VDSKPVNLGLWDTAGQEDYDR		TRUE											92%	
13 14				433%	358%	358%	285%	285%	285%	263%	263%	263%	263%	260%	

続いて、緑に塗られたペプチドがないタンパク質をリストから除きます(下図)。

14	В	C	D	E	F	G	н	1	
1				Group 1	Group 2		Group 3		
2	Peptide	Ecusive	Valid	611578319	8 81132 (POL)	813056140	81169158861		
3	AKWYPEVR		FALSE	9%	9%	9%			
4	CVVVGDGAVGK		FALSE	28%	28%	28%			
5	DDKDTIEK		TRUE	73%	73%	73%	73%		
6	GSPQAIK	Chain A, Small G-Protein	TRUE	75%	1				
7	IISAMQTIKCVVVGDGAVGK		TRUE		4				
8	KLTPITYPQGLAMAK	Chain A, Small G-Protein	TRUE	95%					
9	LIPITYPQGLAMAK	Ras-related C3 botulinum tox	TRUE		95%	95%			
10	LTPITYPQGLAMAK	Chain A, Small G-Protein	TRUE	95%					
11	LVPITYPQGLAMAK		TRUE						
12	TVFDEAIR		TRUE	95%	95%	95%	95%		
13	VDSKPVNLGLWDTAGQEDYDR		TRUE				92%		
14				433%	263%	263%	260%		

最後に、緑に塗られたペプチドの中で probability が 95%未満のものしかないタンパク質をリストから除きます(下図)。

4	scaffo	Id Table Export.xls						
1	A	В	С	D	E	F	G	н
1					Group 1	Group 2		
2	Inde	2 en sée	Ecclusive TO	Valid	BI1578319	8 BI13279011	613055149	
3	1	AKWYPEVR		FALSE	9%	9%	9%	
4	2	CVVVGDGAVGK		FALSE	28%	28%	28%	
5	3	DDKDTIEK		TRUE	73%	73%	73%	
6	4	GSPQAIK	Chain A, Small G-Protein	TRUE	75%			
7	5	IISAMQTIKCVVVGDGAVGK		TRUE				
8	6	KLTPITYPQGLAMAK	Chain A, Small G-Protein	TRUE	95%			
9	7	LIPITYPQGLAMAK	Ras-related C3 botulinum tox	TRUE		95%	95%	
10	8	LTPITYPQGLAMAK	Chain A, Small G-Protein	TRUE	95%			
11	9	LVPITYPQGLAMAK		TRUE				
12	10	TVFDEAIR		TRUE	95%	95%	95%	
13	11	VDSKPVNLGLWDTAGQEDYDR		TRUE				
14					433%	263%	263%	

最終的に残ったものが Legacy proteins group でまとめられる「group」となります。

## 7-4. Samples View と Similarity View との関連について

類似(Group,Cluster)タンパク質の類似状況と、**Samples** View 並びに **Similarity** View でそれらが どのように表示されるかについて、改めて説明します。

group [same-set] のタンパク質は、**Samples** view で代表タンパク質1つにまとめられて表示され ます(下図)。Accession Number の後ろに(+数字)の形で表示され、カーソルを合わせると画面下部の Protein Information pane に group に属する他のタンパク質の情報を確認する事ができます。

Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:         Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:         Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:         Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:         Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:         Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:         Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:         Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:         Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:         Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend:       Image: Probability Legend: Probability Legend: Probability Legend: <t< th=""><th>Display Options</th><th>s: Total Unique Peptide Count v Reg Mods: No f</th><th>Filter – Search:</th><th></th></t<>	Display Options	s: Total Unique Peptide Count v Reg Mods: No f	Filter – Search:	
1262       ✓       FAS-associated factor 1 OS=Mus musculus OX=10090 G FAF1_MOUSE       Faf1         1263       ✓       Histone H2A.V OS=Mus musculus OX=10090 GN=H2afv P H2AV_MOUSE (+1)       H2afv         1264       ✓       Humo overgreese 2, OS=Mus musculus OX=10090 GN=H2afv P H2AV_MOUSE (+1)       H2afv         1265       ✓       Importin=8 OS=Mus musculus OX=10090 GN=H2afv P H2AV_MOUSE       Hmov2         1265       ✓       Importin=8 OS=Mus musculus OX=10090 GN=H2afv P H2AV_MOUSE       Hmov2         1266       ✓       Protein NipSnap homolog 1 OS=Mus musculus OX=10090 NIPS1_MOUSE       Nipsnap1         1267       ✓       Nuclear pore complex protein Nup98-Nup96 OS=Mus musculus. NUP98_MOUSE       Nup98         1268       ✓       Adenylosuccinate synthetase isozyme 2 OS=Mus musculu PURA2_MOUSE       Ades         1268       ✓       Adenylosuccinate synthetase usculus OX=10090 GN=Stor3 PE SEXN8 MOUSE       Stor3	2aqisi # \\ 1260 1261 \\	Probability Legend: over 95% 80% to 94% 50% to 94% 20% to 49% 0% to 19% Bio View: 2793 Proteins in 2524 Clusters 2793 Proteins in 2524 Clusters With 12 Decoys and 6 Filtered Out DENN domain-containing protein 4C OS=Mus musculus O Sorbitol debudrogenese, OS=Mus musculus OX=10080 GN=	DEINAC_WOUSE	Dennate ID
1265       ✓ importin=8 OS=Mus musculus OX=10090 GN=Ipo8 PE=1 S IPO8_MOUSE       Ipo8         1266       ✓ importin=8 OS=Mus musculus OX=10090 GN=Ipo8 PE=1 S IPO8_MOUSE       Nipsnap1         1267       ✓ importin=8 OS=Mus musculus OX=10090 GS=Mus musculus OX=10090 NIPS1_MOUSE       Nipsnap1         1267       ✓ importin=8 OS=mus musculus OX=10090 OS=Mus musculus OX=10090 GS=Mus musculus E       Nup98_MOUSE       Nup98         1268       ✓ importin=3 OS=musculus OX=10090 GN=Stor3 PE SEXN8 MOUSE       Aders/Indextorate Synthetase isozyme 2 OS=Mus musculu PURA2_MOUSE       Aders/Indextorate Synthetase Isozyme 2 OS=Mus musculus SEXN8 MOUSE       Stor3	1262 1263 1264	FAS-associated factor 1 OS=Mus musculus OX=10090 G Histore H2A.V OS=Mus musculus OX=10090 GN=H2afv P Home overpress 2 OS=Mus musculus OX=10000 CN=Hem	FAF1_MOUSE H2AV_MOUSE (+1) HMOV2_MOUSE	Fafl H2afv Hmov2
	1265 1266 1267 1268 1268 1269 V	<ul> <li>Importin-8 OS=Mus musculus OX=10090 GN=1po8 PE=1 S</li> <li>Protein NipSnap homolog 1 OS=Mus musculus OX=10090</li> <li>Nuclear pore complex protein Nup98-Nup96 OS=Mus mus</li> <li>Adenylosuccinate synthetase isozyme 2 OS=Mus musculu</li> <li>Sideroflexin-3 OS=Mus musculus OX=10090 GN=Sfxn3 PE</li> </ul>	IPO8_MOUSE NIPS1_MOUSE NUP98_MOUSE PURA2_MOUSE SFXN3_MOUSE	Ipo8 Nipsnap1 Nup98 Adss Sfxn3

MASCOT でいう sub-set のタンパク質は、samples view には全く表示されません。**Similarity** View の「No group」欄にまとめて表示されます(下図)。



Family protein に属するような、シェアペプチドを持ちつつユニークなペプチドを持つ場合で、シェア ペプチドの確からしさもある程度保証されている場合、**Samples** View には「Cluster」としてまとめられ て表示されます(下図)。

295	<ul> <li></li> </ul>	Adenylyl cyclase-associated protein 1 OS=Mus musculus CAP1_MOUSE
296	$\checkmark$	Elongation factor Tu mitochondrial OS=Mus musculus OX FETU MOUSE
297	$\checkmark$	Cluster of Calcium/calmodulin-dependent protein kinase KCC2B_MOUSE [2]
- 297.1	$\checkmark$	Calcium/calmodulin-dependent protein kinase type II KCC2B_MOUSE
297.2	$\checkmark$	Calcium/calmodulin-dependent protein kinase type II KCC2D_MOUSE
200	~	Transport and Golgi organization protein 1 homolog CS TGO1_MOCSE
<del>+</del> 299	$\checkmark$	Cluster of Creatine kinase B-type OS=Mus musculus OX=KCRB_MOUSE
300	$\checkmark$	Aldo-keto reductase family 1 member A1 OS=Mus muscul AKI A1_MOUSE

一方 シェアペプチドの確度が基準を満たさない場合や、古いバージョンの Grouping アルゴリズムを 使った場合、Samples View において特にタンパク質をまとめた表示は行いませんが、**Similarity** View にてその重複度合いをチェックする事ができます。

Cluster も含め、シェアペプチドをもつタンパク質は **Samples** View にて「Protein Grouping Ambiguity」列の星印がついています(下図)。



星印をダブルクリックすると 該当タンパク質に関する Similarity view に切り替わります(下図)。

Clust	Cluster of Tubulin beta-5 chain OS=Mus musculus OX=10090 GN=Tubb5 PE=1 SV=1 (TBE5_MOUSE)													
					Cluste	er of Ti	ubulin	beta-5	chain	OS=M	us mus	culus		
Index	Peptide	Prob	Exclusive	Valid	TBEE_MOUSE	* TBB1_MOUSE	TBE2A_MOUSE	TBEZB_MOUSE	TBEB_MOUSE	TBB4A_MOUSE	TBB4B_MOUSE	TBB6_MOUSE		
1	AILVDLEPGTMDSVR	100%		$\checkmark$	0.36		0.07	0.07	0.50					
2	ALTVPELTQQMFDAK	100%		1 1										
13				$\sim$					0.47	0.40	0.07	0.07		
I .	ALTVPELTQQMFDSK	100%		ž			0.50	0.50	0.47	0.40	0.07	0.07		
4	ALTVPELTQQMFDSK ALTVPELTQQVFDAK	100% 100%	Tubulin bet	$\sim$ $\sim$	1.00		0.50	0.50	0.47	0.40	0.07	0.07		
4	ALTVPELTQQMFDSK ALTVPELTQQVFDAK AVLVDLEPGTMDSVR	100% 100% 100%	Tubulin bet	> $>$ $>$ $>$	1.00		0.50	0.50	0.47	0.40 0.85	0.07 0.15	0.07		
4 5 6	ALTVPELTQQMFDSK ALTVPELTQQVFDAK AVLVDLEPGTMDSVR EVDEQMLAIQSK	100% 100% 100% 100%	Tubulin bet Tubulin bet	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1.00		0.50	0.50	0.47 1.00	0.40 0.85	0.07 0.15	0.07		
4 5 6 7	ALTVPELTQQMFDSK ALTVPELTQQVFDAK AVLVDLEPGTMDSVR EVDEQMLAIQSK EVDEQMLNVQNK	100% 100% 100% 100%	Tubulin bet Tubulin bet	<u> </u>	1.00 0.62		0.50	0.50	0.47 1.00	0.40 0.85	0.07 0.15 0.13	0.07		
4 5 6 7 8	ALTVPELTQQMFDSK ALTVPELTQQVFDAK AVLVDLEPGTMDSVR EVDEQMLAIQSK EVDEQMLNVQNK EVDEQMLSVQSK	100% 100% 100% 100% 100%	Tubulin bet Tubulin bet Tubulin bet	****	1.00 0.62		0.50 0.13	0.50	0.47 1.00	0.40 0.85 1.00	0.07 0.15 0.13	0.07		
4 5 6 7 8 9	ALTYPELTQQMFDSK ALTYPELTQQVFDAK AVLVDLEPGTMDSVR EVDEQMLAIQSK EVDEQMLNVQNK EVDEQMLSVQSK FPGQLNADLR	100% 100% 100% 100% 100% 100%	Tubulin bet Tubulin bet Tubulin bet	****	1.00 0.62 0.22	0.02	0.50 0.13 0.05	0.50 0.13 0.04	0.47 1.00 0.31	0.40 0.85 1.00 0.26	0.07 0.15 0.13 0.05	0.07		

Similarity view で内容をチェックしたことのあるタンパク質は **Samples** View で星の色が緑に 代わります(下図)。切り替わる前の星の色は赤色です。



## 7-5. Similarity View 概要

「Similarity」View では、特定タンパク質とマッチング内容が類似する別タンパク質について、ペプチドの重なり具合などをチェックすることができます(下図)。



「Similarity」View 画面は主に3つのパーツに分かれています。

画面上部にある「Protein Pulldown list」は、現在選択中のタンパク質を表します。

「Similarity table」は類似タンパク質とのペプチドの重複度合いを確認する事ができます。

「**Identification pane**」では、「Similarity table」にて選択しているペプチドに関して関連情報を表示 する欄で、「Proteins View」画面の右上「peptides pane」や、下部「Spectrum pane」と同じ内容です。 項目の詳細については、Protein View 内画面の各説明「**6-3** peptide pane」「**6-4**.Spectrum pane」を ご参照ください。

本資料では、メインとなる表示「Similarity table」についてのみ説明しています。

Similarity view の画面上段から中段にかけて表示されている画面が「Similarity table」です(下図)。 類似タンパク質について、どのペプチドがシェアされているのかを確認する際に利用します。



各列の項目はそれぞれ以下の通りです。

・Index - ペプチドの通し番号

・**Peptide** – ペプチド配列

・Prob. - ペプチドの同定確率。prefiltered mode で取り込んだ場合、すべて「99%」と表示

・Exclusive to - ユニークペプチドかどうか。ユニークな場合、タンパク質名が表示

・Valid - ペプチドを解析に利用しているかどうか。ユーザーが自らクリックし、使用するかどうかを経能 する事もできます。

その次の列からはタンパク質になります。タンパク質はユニークなタンパク質毎に、あるいはクラスター ごとに色分けで表示されています。"Exclusive to" 列にタンパク質名の表示と着色があり、最上列の タンパク質の色と連動しています。

ペプチドとタンパク質が交わる各セルに表示される数字は、新しいグルーピングアルゴリズムが採用され ている時は Weight の数値が表示されます。Legacy protein grouping の時は Probability が表示され タンパク質の Accession の下に*がある 場合、ペプチドの同定基準を満たしユニーク なペプチドが存在するものの、タンパク質の 同定基準を満たせず現段階の Samples の リストには表示されていない タンパク質で あることを示しています (*右図の ALBU_PIG など)

				Serum a	albumi	Seru	Seru	Seru	No Group
Index	Peptide	Exclusive To	Valid	ALBU_BOVIN	ALBU_CONTR	* ALBU_PIG	ALBU_RABIT	* ALBU_RAT	ALBU_SHEEP
1	AADKDNCFATEGPNLVARSKE	Serum albu	1					95%	
2	AATITK		1						
3	AEFVEVTK	Serum albu	1	100%	100%				
4	AIPENLPPLTADFAEDKDVCK	Serum albu	1	100%	100%				
5	CCAADDKEACFAVEGPK	Serum albu	1	100%	100%				
6	CCTESLVNR		1	100%	100%	(100%)			(100%)
7	CDNQDTISSK	Serum albu	$\checkmark$	62%	62%				
8	DAFLGSFLYEYSR	Serum albu	1	100%	100%				
9	ΠΑΤΡΕΝΙ ΡΡΙ ΤΑΠΕΑΕΠΚΠΛΟΚ	Serum alhu	J	100%	100%				

# 8. Quantify View

# 8-1. Quantify View : 定量指標を基にしたグラフや GO,ベン図を表示

Scaffold では各種機能を持つ View(画面)があり、左側にそれらの View を切り替えるためのスイッチが あります。定量値に関するグラフを表示したり、同定結果のベン図や Gene Ontology に関する図・グラフを 表示したりする事ができるのが「Quantify」View です(下図)。 Quantify View は大きく分けると4つのパートから構成されています。



#### ·Quantitative Value pane (左上)

選択中のタンパク質について、サンプル 別の定量に関連する値(Quantitative value)の比較ができる 棒グラフが表示されます。

#### ·Quantitative Scatterplots pane (右上)

サンプル間で各タンパク質の定量値に関する散布図や volcano plot が表示されます。

#### ·Venn Diagrams pane (左下)

同定タンパク質/ペプチドに関してサンプル別に比較ができるベン図が表示されます。またベン図の 各エリアに属するタンパク質/ペプチド を確認する事ができます。

#### ·Annotation charts pane (右下)

Samples に表示されているタンパク質のGene Ontologyの項目情報やPathwayの項目情報について

まとめた円グラフなどが表示されます。

Quantify 内の表示内容は連動しており、例えば Quantitative Value pane のプルダウンでタンパク質 を選択すると Quantitative Scatterplot pane や Venn Diagrams pane で該当タンパク質が強調表示 されます。

以降、各 pane について説明しています。

### 8-2. Quantitative Value pane

画面左上が Quantitative Value pane です。縦軸が Quantitative value で各サンプル別の棒グラフ が表示されます。縦軸の値は Experiment -> Quantitative Analysis で選択している「Quantitative Method」の選択肢に連動しています。選択肢内容については、「**11-2**.ラベルフリーの定量方法」をご参照 ください。



グラフ内で右クリックをすると、各種画像ファイルへのエクスポートや印刷、データのテキストコピーなどの 選択肢が現れます。

### 8-3. Quantify Scatterplots pane

画面右上が Quantitative Scatterplots pane です。定量値について、サンプル間で比較して確認 したい際に利用します。以下の3つのタブから構成されています。

- 8-3-1. Scatterplot タブ
- ・ 8-3-2. Stdev Scatterplot タブ
- 8-3-3. Volcano Plot タブ

以降、Quantify Scatterplots pane 内の各タブについて説明します。
#### 8-3-1.Scatterplot タブ

X軸とY軸に、チェックしたいサンプルをプルダウンから選択します。それぞれの軸の値は Quantitative value を表し、各点はタンパク質に該当します(下図)。Quantitative Value pane と同じく、 Quantitative value が具体的に何を示しているかは Experiment -> Quantitative Analysis で選択し ている「Quantitative Method」の選択肢に連動しています(同ダイアログ内の「Use Normalization」や 「Minimum Value」選択とも連動しています)。



グラフ内の各点について、カーソルを合わせると縦軸と横軸の値、並びに Accession の情報が表示され ます(上図内①)。またクリックするとタンパク質を選択したことになり(上図内②)、そのタンパク質の情報 について左上の Quantitative Value pane での図表示や、左下の Venn Diagrams でのハイライト表示 と連動します。

また、図内には y=x の直線が引かれる(上図内③の実線)ほか、 $\pm \sigma$ 、 $\pm 2\sigma$ 、 $\pm 3\sigma$ に該当す線も引かれます。

さらに検定を実施している場合、有意基準に達しているかどうかで各点の色が変化します。検定でなく Coeeficient of Variance (変動係数)が選択されていた場合は1以上の時、Fold Change が選択されてい た場合は2以上、または0.5以下の時に「有意」としています。

### 8-3-2.Stdev Scatterplot タブ

Stdev Scatterplot タブでは、Coefficient of variance (または variation、変動係数:CV)の評価に利用 するグラフです。Quantitative Value のばらつき具合を見ています。各点はタンパク質を表し、横軸が Quantitative Value の(カテゴリー内)全サンプルにおける Mean について Log₁₀ とったもの、縦軸が 同 様の数値の SD です(次頁図)。もし検定が行われている場合は検定の対象として選択している sample の み、表示対象とされます。



グラフ内の点線は各プロットから計算された回帰直線です。データのばらつきが大きなタンパク質を 識別し、定量の検証に使うかどうかを判断する事もできます。

### 8-3-3.Volcano plot タブ

Volcano plot はタンパク質のサンプル間での変動を見るのに便利なグラフです。前提として、対象 サンプルを選択した上での検定を実施する必要があります。

X 軸は Scatter plot タブで選択中の2カテゴリーにおける fold change の Log です。fold change とは この場合単純に比(割り算)の事をさし、その値に対して Log2 をとっています*。

*各所で用いられる用語のばらつきによっては、本グラフの横軸である、比の Log2 の事を Fold change と呼称する場合もあります。

Y 軸は検定の結果計算された各タンパク質の p-value について Log₁₀ をとりマイナスをかけたものです。

従って、X 軸については左右の方向にいけばいくほど、Y 軸については上に行けば行くほど該当タンパク 質が選択サンプル間で大きく変動していることを意味します(次頁図)。



他のグラフ同様、各点はタンパク質を表し、点にカーソルを合わせると accession 並びに X/Y 軸の値が 表示されます。またクリックするとそのタンパク質の情報について左上の Quantitative Value pane での 図表示や、左下の Venn Diagrams でのハイライト表示と連動します。

X 軸の 0 の値、すなわち変動がないラインついてはグラフ表示のオプションで変更することができます。 また同様に Y 軸の Significant のラインについても変更可能です。

## 8-4. Venn Diagrams pane

Quantify 画面の左下、「Venn Diagrams pane」では最大3つのカテゴリーを対象にベン図を書かせる ことができます。「Proteins」「Total Unique Peptides」「Total Unique Spectra」3つのタブから構成され、 それぞれタンパク質/ペプチド/スペクトル数 についてベン図を描く事ができます(下図)。

Venn Diagrams	5 🔞					
Counting unit:	Individual Proteins	¥				
Evaluate based on:	Presence/Absence	*				
1: AA	✓ 2: BB	~	3:	cc 🗸		
Proteins Total Unio	que Peptides   Total Unique Spectra					
		Accession		Protein Name		
AA BB		ALBU BOVIN		Serum albumin precursor (Allergen Bos d 6)		
	OTRF_CONTR		NF00050265 Ovotransferrin [Gallus gallus]			
	$\langle \rangle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle $	IGGL_CONTR		IMMUNOGLOBULIN LAMBDA LIGHT CHAI		
		PERA_ARMRU		Peroxidase C1A precursor (EC 1.11.1.7)		
		IGG_CONTR		NF00163549 Ig gamma-2 chain C region (		
		UBIQ_CONTR		NF00159992 Ubiquitin [Bos taurus]		
		MYG_HORSE		Myoglobin		
\ 1		SODC_BOVIN		Superoxide dismutase [Cu-Zn] (EC 1.15		
		IGGH_CONTR		IGG2A HEAVY CHAIN CONSTANT REGIO		
		TRYP_PIG		Trypsin precursor (EC 3.4.21.4)		
		LACB_BOVIN		Beta-lactoglobulin precursor (Beta-LG) (Al		
		LACB_CONTR		NF00161101 beta-lactoglobulin [Bos taurus]		
		CYC_BOVIN		Cytochrome c		
	CC	ALBU_RABIT		Serum albumin precursor		
		IGGV_CONTR		IMMUNOGLOBULIN LIGHT CHAIN VARIAB		

ベン図内の各領域を選択しクリックすると黄色のハイライト表示がされ(上図①)、選択領域に属する タンパク質/ペプチド/スペクトルの一覧がその右側に表示されます。表内にて青色でハイライト(上図②) を受けているのは現在選択されているタンパク質で、表内の行をダブルクリックする事でタンパク質を切り 替える事もできます。

また表内のエリアをダブルクリックすると Samples View に切り替わり、その時に選択エリアに 属する タンパク質だけがフィルターリングで残された状態となっています。元の状態に戻すには Samples 画面上 部の「Search」のところにある文字列を削除し空欄にします。

グラフの上の「Counting Unit」では、数え上げる対象をクラスター単位とするか個々のタンパク質と するか変更することができます。データ取り込み時のグループ化オプションによっては表示されません。

また「Evaluate based on」は対象とするタンパク質についてのオプションで、「Presence/Absence」は Samples 表での有無で判断するのに対し、「Quantitative profile」は検定に使用されたかどうかで判断 されます。従って「Quantitative profile」は検定を行った時にしか選択する事ができません。

### 8-5. Annotation Charts pane

Quantify View の右下、「Annotation Charts pane」では、各タンパク質にアサインされた Gene

Ontology または Pathway 情報に関してまとめた図を表示します。それぞれ、2つのタブ「Pie Charts」 「Bar Charts」から構成されます。

例えば Gene Ontology では「Biological Process」「Cellular Component」「Molecular Function」 から構成されていますが、画面上部のプルダウンから該当項目を選ぶことで表示内容を切り替える事が できます。

「Pie Charts」タブ では Samples で表示されているすべてのタンパク質について Gene Ontology/Pathway 情報の項目を数え上げ、それを円グラフにて表示しています(下図)。



一方同様の情報を棒グラフにて表示しているのが「Bar Charts」です(下図)。



# 9. Publish View

# 9-1. Publish View : Method の文章化

Scaffold では各種機能を持つView(画面)があり、左側にそれらのViewを切り替えるためのスイッチがあります。

9 章では「**Publish**」View について説明しています。各種論文投稿時、データ解析に関する説明文を記載 する必要がありますが、その目的に役立つのが Publish View 画面です。

Scaffold Evalua	tion - Publish - Label-Free		- 🗆 X					
Eile Edit View Exp	eriment Export Quant Wind	ow <u>H</u> elp 👒 🤹 և 🞗 🗛 Protein Threshold	99.0% V Min # Peptides: 2 V Peptide Threshold: 95% V @					
	Experiment Methods							
Load Data	Parameter Experiment:	Value Label-Free	DATABASE SEARCHING Tandem mass spectra were extracted by [unknown] version [unknown]. Charge state deconvolution and deisotoping were not performed. All MS/MS samples were analyzed using Mascot (Matrix Science, London, UK; version 2.4.0) and XI Tandem (The GPM.					
Samples		~ ~ ~	thegpm.org; version CYCLONE (2010.12.01.1)). Mascot was set up to search the uniprot_sprot_2010_09 database (unknown version, 519348 entries) assuming the digestion enzyme stricttrypsin. XI Tandem was set up to search the uniprot_sprot_2010_09 database (unknown version, 519348 entries) also assuming stricttrypsin. Mascot and XI Tandem were searched with a fragment ion mass tolerance of 0.020 Da and a parent ion tolerance of 10.0 PPM. Carbamidomethyl of cysteine was specified in Mascot and XI Tandem as a fixed modification.					
Proteins	Database Set:     Database Name:     Database Name:     Version:     A Taxonomy:     A Number of Pr	1 Database the uniprot_sprot_2010_09 database All Entries 519348	Deamidated of asparagine and glutamine, oxidation of methionine and acetyl of the n-terminus were specified in Mascot as variable modifications. Glu->pyrc-Glu of the n-terminus, ammonia-los of the n-terminus, gln->pyro-Glu of the n-terminus, deamidated of asparagine and glutamine, oxidation of methionine and acetyl of the n-terminus were specified in XI Tandem as variable modifications.     CONTENDED TO DEATION CONTENDED TO DEATION OF THE SPECIFICATION OF THE SPE					
Similarity	Does database oo     Search Engine Set:     Search Engine:     Search Engine:     Version:     Samples:	2 Search Engines Mascot 2.4.0 All Samples	<ul> <li>CRITERIA FOR PROTEIN IDENTIFICATION- Scaffold (version Scaffold_4.8.9, Proteome Software Inc., Portland, OR) was used to validate MSMS based peptide and protein identifications. Peptide identifications were accepted if they could be established at greater than 95.0% probability. Peptide Probabilities from Mascot were assigned by the Scaffold Local FDR algorithm. Peptide Probabilities from XI randem were assigned by the Peptide Prophet algorithm (Keller, A et al Anal. Chem. 2002;74(20):5383-92) with Scaffold detla-mass correction. Protein identifications were accepted if they could be established at greater than 99.0% probability and contained at teast 2 identified peptides. Protein probabilities were assigned by the Protein Prophet algorithm (Nesvizhskii, Al et al Anal. Chem. 2003;75(17):4646-58). Proteins that contained similar peptides and could not be differentiated based on MSMS analysis alone were grouped to satisfy the principles of parsimony. Proteins were annotated with GO terms from gene_association.goa_uniprot-large (downloaded Feb 25, 2013) (Ashburner, M et al Nat. Genet. 2000;25(1):25-9).</li> </ul>					
Quantify	Fragment Tole     Parent Tolea     Fixed Modifica     Variable Modifi	0.020 Da (Monoisotopic) 10.0 PPM (Monoisotopic) +57 on C (Carbamidomethyl) +1 on NG (Deamidated), +16 on M						
Publish	Digestion Erzy     Max Missed Cl     Probability Mo     qe2_10122	the uniprot_sprot_2010_09 databas stricttrypsin 2 LFDR Model, Classifier data: Baye						
Statistics	ge210122     Search Engine:     Version:     Samples:	LFDR Model, Classifier data: Baye X Tandem CYCLONE (2010.12.01.1) All Samples						
	Parent Tolera     Prized Modifica     Variable Modifica	10.0 PPM (Monoisotopic) 157 on C (Carbamidomethyl) 18 on Peptide N-Terminal (Glu the uninet sont 2010 09 database						
	Digestion Erzy     Max Missed Cl     Probability Mo     pre210122	stricttrypsin 2 Pentide Pronhet with Delta Mass						
	Scaffold:	Peptide Prophet with Delta Mass Version: Scaffold,48.9 1541 modifications C:¥Program Files¥Scaffold¥4.0-exp						
	Comment:     Protein Grouping     Peptide Thresholds:     Britein Thresholds:	Experiment-wide grouping with bin 95.0% minimum 99.0% minimum and 2 centicles min						
315 Proteins at 99.0% Minimum 2 Min # Peptides 0.0% Decoy FDR 3591 Spectra at 95.0% Minimum 0.00% Decoy FDR	Protein Thesholds.     Peptide FDR:     Protein FDR:     GO Annotation S     Alternate ID Sour	0.0% (Decoy) 0.0% (Decoy) gene_association.goa_uniprot-large	Export Protein Report Report Report					
			Report Report Report					

画面左側が、解析内容について項目別にまとめられた表です。取り込んだデータの内容に合わせて 項目が自動入力されます。項目前に鍵マークがついている欄はユーザーによる書き換えができません。

赤い強調表示されている項目はユーザーの手入力による穴埋めが促されています。そのうち入力欄に 「∨」となっている箇所については、クリックする事で選択肢が現れユーザーが選択をする形になっていま す。

左側の表に入力された内容に合わせて、右側の説明文が自動的に編集されます。右側の説明文について はドラッグ&ドロップで文章を選択できるほか、ショートカットキーなどでテキストをコピーする事ができま す。ユーザーはこの文章を出発点とし書き換えたものを 論文投稿などでの method に利用する事ができ ます *1。

右側下部には情報を EXCEL で読むことができる形式で出力できるボタンがついています。各ボタンに よって出力される内容は、メニューの「Export」にて選択できる内容と同じです。詳細は「**4-1**.メニューの 内容 説明一覧」の「Export」欄をご覧ください。

*1

Scaffold を利用した解析においては、論文投稿時に以下論文を参照してください。 https://onlinelibrary.wiley.com/doi/abs/10.1002/pmic.200900437

## **10. Statistics View**

## 10-1.Statistics View 概要:同定確率計算に使用したスコア分布などを表示

Scaffold では各種機能を持つ View(画面)があり、左側にそれらの View を切り替えるためのスイッチがあります。

「Statistics」View では、主にペプチド同定やタンパク質同定のアルゴリズムに関連するデータ・グラフを 表示する事ができます。従って、データを Prefiltered mode で取り込んだ場合は何も表示されません。



Statistics View は主に4つの画面から構成されています。

左上、**MS Sample table** は、Experiment 内の MS Sample に関する情報をまとめた表です。

右上、**Statistics View Upper Right pane**は、「FDR Browser tab」「Peptide RPC Plots tab」「Protein Probability Calculation tab」3つのタブから構成されていて、ペプチドやタンパク質の probability 計算 に直結する数値を確認できるグラフです。

左下、**Multiple Search Engine Scatter Plot pane** は、複数の検索エンジンでのスコアを比較する散布 図です。

右下、Peptides Validation pane は、検索エンジンでのスコア分布と適用アルゴリズムでの分布を同時 に確認できるグラフです。

左上の MS Sample table で選択されている項目について、他の pane のグラフ・図が表示されます。 選択の変更によってグラフもインタラクティブに表示が切り替わります。また画面上部の各種フィルターの 選択内容にもインタラクティブに対応します。

## 10-2. MS Sample table

Statistics View の左上、MS Sample table は、MS Sample に関する情報がまとめられています(下図)。表示される情報は以下の通りです。

Category	Bio Sample	MS/MS Sample	#Prot	#IDs	#Spec	%IDs
AA	c1	control_071904_01 (F001807)	15	190	1751	27%
AA	c2	control_071904_02 (F001808)	19	192	711	27%
BB	c3	control_071904_03 (F001809)	15	198	726	27%
BB	c4	control_071904_04 (F001810)	16	191	723	26%
CC	c5	control_071904_05 (F001811)	15	205	732	28%

·Category -属する Category 名

・BioSample - 属する BioSample 名

·MS/MS sample - MS Sample 名

**・#Prot** - 同定タンパク質数

・**#IDs** – ユニークな同定スペクトル数。MS/MS Sample View モードでの、Exclusive Spectrum Counts の和(下図、黄色の枠で囲まれた箇所を参照)。またクラスターモードの時にも個々のタンパク質に ついてカウントされます。

・#Spec (ユニークでないものも含む)同定スペクトル数。

・%IDs 同定スペクトル中に占めるユニークスペクトルの割合。#IDs / #Spec。



## **10-3. Statistics View Upper Right Pane**

Statistics View の右上の pane には公式に名称を付けておりませんが、主にペプチドやタンパク質の同定の検証に関連する情報を提供しています。以下3つのタブから構成されています。

- 10-3-1. FDR Browser タブ
- 10-3.2 Peptide ROC Plots タブ
- 10-3-3. Protein Probability Calculation タブ

以降、1つ1つのタブについて説明しています。

#### 10-3-1. FDR Browser タブ

通常データベースに加え decoy データベースへの検索も実施している時のみ現れるタブです。Peptide Probability と Protein Probability の組み合わせにより、基準を超えるタンパク質がいくつになるかをヒートマップで表しています(下図)。赤がタンパク質の数が少なく緑が多くなっていますが、基本的に赤の領域にど確度の高いタンパク質の領域です。ヒートマップの描写はグラフ下の設定数値と連動しています。 設定値には「Max.Protein FDR」「Max Peptide FDR」「Min # Peptides」の3種類があります。



このグラフの一番の目的は、Peptide Probability と Protein Probability の組み合わせが同定タンパク 質数にどのように影響を及ぼすのかを確認する事です。解析の目的に応じて Peptide, Protein の Probability の Threshold を変更し状況に合わせた同定タンパク質リストを作成する事ができます。

表示されているヒートマップ上にカーソルを合わせると、その位置における Peptide Probability, Protein Probability、基準を超えるタンパク質数とともに、Peptide や Protein の FDR の値も表示され

ます(下図、青枠)。また、グラフの中には条件によりプロットが現れる事があります。青い〇は現在の条件 の中で最も拾い上げるタンパク質が多くなり、かつ各基準値の値が高くなる位置を表します。ピンクの〇は 現在 Filter として設定しているアサインペプチド数とグラフ内の Min # Peptides が 同じ時のみ表示さ れ、filterの設定箇所を表します。



#### 10-3-2. Peptide ROC Plots

Peptide ROC Plot タブでは、ROC カーブの図が表示されます。ペプチド同定において、同定基準と、 Sensitivity / Specificity のバランスを確認するために利用します。

横軸に偽陽性率(1-特異度 (陰性を陰性と判断する率])、縦軸にはここでは 同定ペプチド数をとったグ ラフです。* 通常は Sensitivity (陽性を要請と判断する率)とする事が多いです。各判定方法 (ペプチド 同定アルゴリズム)の、各同定基準値において、False Positive Rate と 同定ペプチド数がそれぞれいくつ なのかを表す線が描かれています(次頁図)。Statistics View の左上、MS Sample pane にて選択されて いる MS Sample についてのグラフが表示されます。

グラフの中の Sensitivity や Specificity の数値については、右下のタブ「Peptide Validation pane」の 表示内容から計算されています。具体的には、Correct を Positive、Incorrect を Negative と認定してそ れぞれのスコア分布から、各スコアにおける Sensitivity や Specificity が計算されます。



本来の ROC カーブは縦軸が Sensitivity で、y=x の直線を引いてその直線と各プロットがどれくらい 離れているかが有効な判定方法かを評価する目安とりますが、本ソフトウェアのグラフでは縦軸の値が異 なるためそのような見方をすることができません。よりグラフの左上方向に曲線が向かっている判定方法 が優秀である、といった見方だけが可能です。

### 10-3-3. Protein Probability Calculation タブ

Protein Probability Calculation タブは、アサインされたペプチド数別に Peptide probability と Protein Probability の関係性を表したグラフです。検索を行った query 数が少ない場合は表示されません。Statistics View の左上、MS Sample pane にて選択されている MS Sample についてのグラフが表示されます。

Scaffold で採用されている、タンパク質同定確率を表す「Protein Probability」は、そのタンパク質にアサインされているペプチドの「Peptide Probability」から計算されています。計算式には検索のパラメータやFASTAのデータベースサイズが関係しています。



グラフを見ると、1 アサインペプチドの場合には peptide probability が 95%でも protein probability が十分な値ではない(上図例では 70%)である事がわかります。逆に 2 つ以上のペプチドがアサインされて いるタンパク質では、peptide probability が十分な値でなくても protein probability が高い値になる事 がわかります。

[次頁に続きます]

## **10-4. Multiple Search Engine Scatter Plot pane**

Statistics View の左下、「Multiple Search Engine Scatter Plot pane」では、同じ query に対して複数 の検索エンジンを適用した場合の、スコアの違いをプロット化したグラフが表示されます(下図)。 Statistics View の左上、MS Sample pane にて選択している MS Sample についてのグラフが表示さ れます。

二軸それぞれに検索エンジンのス コアが配置され、それぞれの(同 定)基準値が横軸/縦軸に点線で 表示されます。また各プロットは correct に属するデータで色分 けされます。さらに、Scaffold の peptide 同定確率を判定するプロ グラム peptide prophet のライ ンが "combined 95%" と表記さ れている実線としてグラフに表示 されています。



## **10-5. Peptides Validation pane**

Statistics View 画面の右下、Peptides Validation pane では、各検索エンジンのスコア分布から peptide probability 算出に利用するスコア分布をどのように変換しているか確認できるグラフが表示されます。

評価アルゴリズムとして Peptide Prophet が選択されていた場合、各検索エンジンにおいて、電荷別の

スコア分布が表示されます。横軸 にはマッチング内容を評価するス コアが、縦軸には個数が 表された 棒グラフが表示されます(下図)。 棒グラフは incorrect と correct 別に色分けがされており、あるス コア位置での両社の割合がそのま ま peptide probability として評 価されます。



# 11. 定量手法と検定

## 11-1. 概要

Scaffold では、いくつかの Label Freeの定量手法 (Spectrum Counting と MS1 イオン強度ベースの 定量)に対応しています。また定量の数値を元にした検定も実施する事ができます。この章では以下の内容 で、Scaffold で対応している定量手法と検定について説明しています。

- 11-2. ラベルフリーの定量手法
- 11-3. Normalization について

11-4. 検定

# 11-2. ラベルフリーの定量方法

Scaffold で対応しているラベルフリーの定量手法は大きく分けると以下の3つの手法に対応しています。

- Spectral Counting [11-2-1]
   各タンパク質にアサインされている、同定スペクトル数(または同定ペプチド数)を元にした定量指標です。
- **Total Ion Count [11-2-2]** MS2 のスペクトルの intensity 情報を定量情報として利用します。
- Precursor Ion Intensity quantitation [11-2-3]
   (利用できる場合のみ) MS1 のペプチドの Intensity 情報を定量情報として利用します。

Scaffold では、各手法に分類される選択肢がそれぞれ複数存在します。以降で各選択肢について説明しています。

No Correction		~			
Significance Level:		_			
p <= 0.05		~			
Use Normalization	ı			1	
Minimum Value: 0.0		~			
Quantitative Method:	Total Spectra	~			
	Total Spectra				
	Weighted Spectra				
	Average TIC				
	Total TIC				
Help	Top 3 TIC				Apply Cancel
<u> </u>	Average Precursor Intensity				
	Total Precursor Intensity				
	emPAI				
	NSAF				
	ibao		/		

## 11-2-1. Spectral Counting

Spectral Counting は各タンパク質にアサインされている、同定スペクトル数(または同定ペプチド数)を元 にした定量指標です。Scaffold では以下の4項目が選択可能です。

- total Spectra
- Weighted Spectra
- emPAI
- NSAF

以下、各手法について説明します。

### total Spectra

タンパク質にアサインされた同定スペクトルの数です。Normalization (11-3 をご参照ください)も実施 されています。

#### Weighted Spectra

タンパク質にアサインされた同定スペクトルのうち、他のタンパク質にもアサインされているシェアされた スペクトルについては、そのシェアされている度合いにより小さな数字としてカウントした数です。詳細は 英文マニュアルの「**7-2-1**. Protein Grouping (sameset)」内に記述されている weight の計算式などをご 参照ください。Normalization(**11-3**をご参照ください)も実施されています。

#### emPAI

タンパク質にアサインされた同定ペプチド数を、タンパク質の大きさで有利/不利 が生じないよう標準化 処理をされた定量指標です。

emPAI は Exponentially Modified Protein Abundance Index の略です。

PAI 自体は以下の式のように、タンパク質にアサインされたペプチド数(N_observed)を、そのタンパク質から得られる理論ペプチド数(N_observable)で割った数値です。

$$PAI = \frac{N_{observed}}{N_{observable}}$$

*元の論文では保持時間や各種条件によりペプチドを数え上げる際にフィルターリング条件も含んでいます。

emPAIは、PAIを使って以下のようにあらわす事ができます。

$$emPAI = 10^{PAI} - 1$$

Scaffold では、計算の簡易化を目的に論文で適用されているルールとは異なるルールで N_observed や N_observable をカウントしています。Matrix Science 社で使用している以下ルールと基本的に同じです。 http://www.matrixscience.com/help/quant_empai_help.html

レアケースにおいて Scaffold でしか採用していない独自ルールがありますが詳細は英文マニュアルを ご参照ください **NSAF** 

NSAF もタンパク質の大きさで有利/不利 が生じないように標準化処理をし、さらに同定スペクトル数 全数との比を考慮した定量指標です。NSAF は Normalized Spectral Abundance Factor の略です。

論文で提示されている NSAF の計算方法ですが、まず Number of spectra (論文では SpC と表記)をタ ンパク質の全長(L)で割った、SpC/L が「SAF」です。解析別に SAF の値をすべて足した値で各 SAF を 割って標準化(Normalized)したのが NSAF です。

Scaffold では SpC のところで「number of exclusive spectra」を適用しています。また normalization は「**11-3.** Normalization について」で説明する方法が採用されています。

### 11-2-2. Total Ion Count

Total Ion Count MS2 のスペクトルの intensity 情報を定量情報として利用します。以下の 3 項目が選択可能です。

- Average TIC

- Total TIC
- Top Three TIC

以下、各手法について説明します。

#### Average TIC

query の MS/MS スペクトル内のすべてのピークについて、その強度の平均値を定量情報として利用します。

**Total TIC** 

query の MS/MS スペクトル内のすべてのピークについて、その強度の和を定量情報として利用します。

**Top Three TIC** 

query の MS/MS スペクトル内のすべてのピークの中で強度の強い top3 について、その強度の和 を定量情報として利用します。

#### **11-2-3. Precursor Ion Intensity quantitation**

Precursor Ion Intensity quantitation は MS1 のペプチドの Intensity 情報を定量情報として利用 します。以下の 4 項目が選択可能です。

- Average Precursor Intensity
- Total Precursor Intensity
- Total Three Precursor Intensity
- iBAQ

この定量手法を利用するためには、Scaffold の取り込み前に別のソフトウェアで手法に合わせた 解析を実施する必要がある他、その時の解析ファイルを別途取り込ませる必要があります。詳細は 以下の資料あるいは英文マニュアルの 14 章をご参照ください。

http://www.proteomesoftware.com/pdf/loading_search_engine_results_into_scaffold.pdf

以降、各手法について説明します。

#### Average Precursor Intensity

タンパク質にアサインされているペプチドの定量値について、幾何平均を定量情報として利用 しま す。

#### **Total Precursor Intensity**

タンパク質にアサインされているペプチドの定量値について、すべての和を定量情報として利用 しま す。

#### Total Three Precursor Intensity

タンパク質にアサインされているペプチドの定量値について、上位3つの和を定量情報として利用しま す。データ数が3つ以下の場合、すべての和を利用します。

#### **iBAQ**

MS1 intensity ベースの定量に、emPAI の概念を組み合わせたような計算です。ペプチドの定量値の和 を、該当タンパク質の理論ペプチド数で割ります。

## 11-3. Normalization について

Scaffold の定量計算では、サンプル間の誤差を吸収するための標準化処理が行われます。その前提と なる考えが、「各サンプル (MS Sample) で同定されるタンパク質の全量は変わらない」というものです。 Spectrum Counting なら同定スペクトル数の和が、MS1 や MS2 の Intensity ならその総和の 値が 全サンプルで同じであるという前提の元、平均より多い(大きい)場合は少なく(小さく)なる ように、 少ない(小さい)場合は多く(大きく)なるように調整されます。従って、サンプル間の タンパク質全 量が等しくないと思われるケースでは Scaffold の Normalization を適用しない方が良いことになります。

同様に、ダイナミックレンジの中で全量が少ないタンパク質は Normalization の影響を大きく受けて差が出やすくなり、本来の値からずれる事も大きくなる点に注意してください。(Scaffold の場合、intensity の値が小さいタンパク質やアサインされたスペクトル数が少ないタンパク質の事をさします。)

Normalization を実行す る/しない、については、 menu の Experiment -> Quantitative analysis で 開くダイアログの右下、 「Other Setting」の中に 「Use Normalization」とい う項目があります(右図)。

🐖 Quantitative Analysis Setup	×
Statistical Test <ul> <li>No Test</li> <li>Coefficient of Variation</li> <li>T-Test</li> <li>Analysis of Variance (ANOVA)</li> <li>Fisher's Exact Test</li> </ul> Multiple Test Correction: No Correction         Significance Level:       p < 0.05	Removed S     Selected S       Sa     Ca       Sa     Ca       Int-1     Int-1       Int-2     Int       Un-1     Un       Add ▶       Image: Add ▶       Image: Add ▶
Fold Change  No Fold Change  Fold Change by Sample  Fold Change by Category  Hold	View Cetting Use Normalization Minimum Value: 0.0 ~ Quantitative Method: Total Spectra

なお、欠損値(Missing values)については、予め定めた最小値 (Minimum value)に置き換えて標準化 計算の処理をします。Minimum value はデフォルトで0に設定されています。また設定した 最小値より 小さな値も最小値に置き換えられてから計算されます。

## 11-4. 検定

Scaffold では算出された定量値について各種検定を実施できます。検定の計算時に利用される数値は、 ペプチド・タンパク質などの各種フィルターリング条件を満たすものだけが対象となります。

🕼 Quantitative Analysis Setup	×
Statistical Test	Removed Sam Selected Sa          Sam       Cat         Sam       Cat         Add       Int=1         Add       Int=2         Int=1       Un=1         Un=2       Un
Fold Change     Fold Change     Fold Change by Sample     Fold Change by Category	Other Settings          Use Normalization         Minimum Value:       0.0         Quantitative Method:       Total Spectra
Help	Apply Cancel

検定とは別に、Fold Change (比)の値を表示させることができます。

利用可能な検定は選択しているカテゴリー数やカテゴリー内のデータ数などで変更され、合わない手法についてはグレイアウトされる事があります。

- •Coefficient of Variance or Coefficient of Variation
- •T-test
- •ANOVA
- •Fisher's Exact Test

検定を実施すると、Scaffold 上でいくつかの変化があります。

■Samples View : 検定の結果、有意性を示す数値(p-value など)と、変動の様子を表す列が表示される ようになります。

■Quantify View :Quantitative Value pane にて、検定の有意性と関連した値がグラフに表示されるようになります。

Fold Change 並びに各検定項目について、以降で説明いたします。

#### **Coefficient of Variance or Coefficient of Variation**

CV、変動係数は標準偏差を平均で割ったもので、データのばらつき度合を表します。値が大きい ほど ばらつきが大きい事を意味します。Scaffold では %表示となっています。値が大きな場合、 サンプル のうち最低 1 つの値が大きくずれていることを表し、値を(グラフなどで)見比べる事で変動のあったサン プルを特定していく事ができます。

#### T-Test

T検定では2つのカテゴリー間の平均に有意差があるかを検証しています。Scaffold では両側検定を行っています。T検定を実施すると、p-value がSamples画面にレポートされます。T検定を実施 するにはカテゴリーが2つ以上選択されている必要があります。

### **ANOVA**

ANOVA (ANalysis Of VAriance、分散分析)では、3 つ以上のカテゴリー間の平均に有意差があるかを検 証しています。ANOVA は様々な手法がありますが、Scaffold で採用されているのはシンプルな手法のみ です。ANOVAを実施すると p-valueが Samples 画面にレポートされます。p-valueが小さい 場合、CV による評価同様少なくともカテゴリーの中のどれか1つが他と異なる事を示しますが、 具体的な内容 はわかりません。値をグラフなどで見比べる事により変動のあったサンプルを特定して いくことができま す。

#### Fisher's Exact Test

Fishers Exact Test (フィッシャーの正確確率検定、フィッシャーの直接確率検定)は、T 検定同様 2 サ ンプル間の比較により両サンプル間に差異があるかを判定する手法です。T 検定との選択における大まか な目安として、カテゴリー内の繰り返しが少ない場合(2回など)にF検定を適用する事を お勧めします。 フィッシャーの正確確率検定を実施すると p value が Samples 画面にレポートされ、その小ささで差異が あるかを判断します。

p-valueの算出に関しては、以下論文で議論され構築されたモデルに基づいています。

[論文]

Zhang, B., VerBerkmoes, N.C., Langston, M. A., Uberbacher, E., Hettich, R. L., Samatova, N. F. *Detecting differential and correlated protein expression in label-free shotgun proteomics* 

J. Proteome Res., 2006, 5 (11), pp 2909–2918. DOI: 10.1021/pr0600273

#### ■ Multiple Test Correction と Significance Level

検定の選択画面の下に、多重検定補正の実施に関する選択肢と、実施する場合の閾値を設定する画面が あります。



No Correction No Correction
Benjamini-Hochberg (Recommended)
Bonferroni
Holm Step-down
Hochberg Step-up

多重検定の際に擬陽性が増加してしまう事を考慮し、別途評価基準を設けて当初の目的に合わせた新たな基準の線引きをする、というのがこの手法の目的です。Scaffold では以下の手法が準備されています。

- Benjamini-Hochberg
- Borferroni
- Holm Step-down
- Hochberg Step-up

Significance Level は、多重検定補正においてはよく「ファミリーワイズエラー率(FWERと表記される事が多い)」と呼ばれます。それぞれの手法について、以下簡単に補足説明を加えます(説明の都合により項目の順番を変更して説明しています)。

### ♦ Borferroni

この手の手法で最も単純で初期の頃に提唱された手法です。設定したい p-value に対し、検定の数で割 り算をします。しかしこの数値の場合基準が厳しくなりすぎる(有意基準に満たないものが多くなってしま う)という事で、現在ではこの手法は選択されず別の手法が使われる事が多くなっています。

## ◇ Hochberg のステップアップと Holm のステップダウン

Bonferroni の不等式をベースとしていますが、様々な点を考慮し基準が厳しくなりすぎないような補正 が追加されています。同定タンパク質数が少ない場合はこの手法が向いています。 詳細は英文マニュアル Appendix E の「Holm's and Hochberg's Techniques to Control the Familywise Error Rate」をご覧ください。

#### $\diamond$ Benjamini-Hochberg

タンパク質の数が少なすぎない場合は基本的にこちらを選択してご利用ください。Hochbergのステップアップや Holm のステップダウン同様、厳しすぎない程度に補正されます。Scaffold に おける計 算では以下の論文で提唱されたモデルを利用しています。

## [論文]

Benjamini Y. and Hochberg Y. *Controlling the False Discovery Rate: A Practical and Powerful,Approach to Multiple Testing* Journal of the Royal Statistical Society, Series B (Methodological),1995, Vol.57, No. 1: 289-300

### Fold Change

複数のサンプル間での比較を行うための検定をご紹介してきましたが、もっと単純な、何かの値を ベース(Reference)に比をとって表示する「Fold Change」を表示させることもできます。

Biosample が2つしかない場合のみ「Fold Change by Sample」が選択できます。また、Quantitative Analysis にてカテゴリーを 2 つだけ選択している時に「Fold Change by Category」が選択できます (下図)。

Fold Change	
🖲 No Fold Change	
O Fold Change by Sample	
O Fold Change by Category	

「Fold Change」を設定した場合、分母となるカテゴリーを選択し、もう 一方 との比が「Fold Change」列に表示されます。Samples 画面では分母に選ばれ た方がベージュに、分子の方が薄紫色に色が塗られて表示されます(右図)。

Missing value を 0 に置き換えた場合などで分母が 0 であった場合、Fold Change の値は「INF」と表示されます。



# 技術サポート

ご質問等ありましたら弊社技術サポートにご連絡ください。 電子メール :support-jp@matrixscience.com 電 話 :03-5807-7897

