

DIA 定量プロテオーム解析ソフトウェア Scaffold DIA

Scaffold DIA 何ができるか

・DIAデータのタンパク質の同定、定量

- •検索対象:4種の検索に対応
 - FASTA
 - BLIB(DDA-ライブラリ),
 - DLIB(prositライブラリ、配列から理論DDAライブラリ作成)
 - ELIB (DIA解析結果ライブラリ)
- ・定量解析/検定とグラフ表示
- •Viewerによる結果ファイルのシェア

対応フォーマット: ProteoWizard Msconvert を使っている

各社メーカーのファイルフォーマット [読み込み	などがよく確認されているもの]
装置メーカー	ファイルフォーマット
SCIEX	*.wiff (.wiff.scanも同じフォルダ に置く事)
Agilent	*.d (ディレクトリ)
Thermo	*.raw
オープンフォーマット (原理的には mzML フォーマット	になっていればデータの読み込みが可能)
HUPO Proteomics Standards Initiative mzMI	* mzMI

* mzMLはほぼすべてのメーカーで変換可能なフォーマット

→ P.13

→ P.50

Samples 画面

同定されたタンパク質の 一覧並びに定量値を はじめとするタンパク質 の関連情報が表示

解析結果の概要を確認 する上で主体となる画面

The Fait Tien en	perment export roots <u>m</u> elp												
🗎 📴 🗆 🛋 🖷	🖿 🗖 🕨 🛝 Summarization: Treatment	rotein FDR 1	LO% EDR	~ N	Ain # Pentides	20 8	0						
Eilters							•						
Show Hidden	P_value filter ▼ GO Ter	m v 🔍	×										
								C	ン津部		宁昌	- 佔古	
Лл	Direly, Turn, Furthering Interaction of Republicad Colors Interaction	Calas Oat						a	ノ1月+12		化里	믜미.	
	Display Type: Exclusive intensity V V Normalized C Log intensities	Color Opt	ions										
Organize	Color Legend (Displayed Value)							Biological Process	Cellular Componen	t Molecular			
00	6.36E8			ŧ				ss ivity lizati		ctivit			
	2.33E7 b	Ŧ	ore	e C				ion ation proce	6	ulea			
	E LOSS	Veigl	dn S	eptid		Ŧ		dhes egula cess ntal p ulato	r reg	tivity			Ę
Samples	<i>ね</i> 、パク哲	ular /	Gro	ed P	vity	atme	Ś	ical r ical r pmel e reg	asm ellula ane s	ic act	-		
	メノハノ貝	olect	oteir	entif	clusi	: Tre	xono	ologi ologi illula evelo izym izym	owth topla trace embi acleu	ndin italyt ructu	ontro	sulin	
	# 5 5 Protein Name	Σ	2	2	<u>ل</u>	1 U			2 2 3 6 2 2	st ca bi	Ŭ	2	Ц
Proteins	2 ✓ splP49/92/KBP2_HUMAN E3 SUMO-protein ligase ka splP4 3	58 kDa 32 kDa	1	54	 100% 100% 	0.26	Homo sapiens Homo sapiens			0 0	2.45E8 1.32E8	2.24E8 1.39E8	
	3 🗹 🍲 sp O43707 ACTN4_HUMAN Alpha-actinin-4 OS=Hom sp O4 1	05 kDa	1	51	▲ 69%	0.48	Homo sapiens	• • •	000	0	6.17E8	5.81E8	
	4 🗹 💮 sp Q5T4S7 UBR4_HUMAN E3 ubiquitin-protein ligase sp Q5 5	74 kDa	1	49	100%	0.27	Homo sapiens	•	0 0	00	8.93E7	8.06E7	
	5 Signature State	74 kDa	1	44	100%	0.036	Homo sapiens			0 0	4.16E8	4.49E8	
Visualize	6 SpiP18206/VINC_HUMAN VInculin OS=Homo sapiens spiP1 1	24 kDa	1	43	100%	0.31	Homo sapiens				6.58E8 1.77E8	5.44E8 1.68E8	
	8 Spl Q9NR30 DDX21 HUMAN Nucleolar RNA helicase 2 splQ9 8	7 kDa	1	41	100%	0.23	Homo sapiens		0 0	0	5.71E8	5.91E8	
. h a 🛛	9 🗹 ☆ sp Q9P2E9 RRBP1_HUMAN Ribosome-binding protei sp Q9 1	52 kDa	1	41	100%	0.090	Homo sapiens	• • • •	• • •	0	1.22E8	1.04E8	
	10 🗹 🏠 sp Q86UP2 KTN1_HUMAN Kinectin OS=Homo sapien sp Q8 1	56 kDa	1	41	100%	0.18	Homo sapiens	• •	•	0	1.24E8	1.09E8	
Analysis	11 🗹 🏠 sp 075533 SF3B1_HUMAN Splicing factor 3B subunit sp 07 1	46 kDa	1	40	• 100%	0.14	Homo sapiens	• •	•	0	2.66E8	2.42E8	
Analysis	12 Sp[P34932]HSP74_HUMAN Heat shock 70 kDa protein sp[P3 9	4 kDa	1	38	100%	0.65	Homo sapiens	• •			5.6118	5.55E8	
	14 Spip20039151 C_HOMAN Inteoninetrivia ligase, cyt spip2 o	67 kDa	1	38	 100% 	0.83	Homo sapiens				4.83F8	9.20E8 4.82F8	21
	15 V splP22102/PUR2_HUMAN Trifunctional purine biosyn splP2 1	08 kDa	1	37	100%	0.65	Homo sapiens	0	00	0	5.69E8	5.46E8	1
	16 🗹 🎡 sp P50990 TCPQ_HUMAN T-complex protein 1 subun sp P5 6	i0 kDa	1	36	100%	0.25	Homo sapiens	• • •	000	0 0	1.20E9	1.27E9	
Publish	17 🗹 🗇 sp P78371 TCPB_HUMAN T-complex protein 1 subuni sp P7 5	7 kDa	1	35	100%	0.39	Homo sapiens	• • •	• •	0	7.59E8	8.82E8	
Proteins	18 🗹 🏠 sp Q04637 IF4G1_HUMAN Eukaryotic translation initi sp Q0 1	75 kDa	1	34	100%	0.51	Homo sapiens	• • •	0 0 0	0	4.85E8	4.79E8	
0.0% FDR (attained) 29 Targets	19 V 3 splP14625[ENPL_HUMAN Endoplasmin OS=Homo sa splP1 9	2 kDa	1	34	100%	0.89	Homo sapiens			0	1.19E9	1.17E9	
0 Decoys	20 SpiP08/29K2C/_HUMAN Keratin, type II cytoskeletal spiP0 5	i kDa	1	33	100%	0.61	Homo sapiens				2.17E9 4.58E9	2.1859	
Pentides	22 ✓ splP06733IENOA HUMAN Alpha-enolase OS=Homo splP0 4	7 kDa	1	30	100%	0.13	Homo sapiens		0 0 0 0	0	7.42E9	1.01E10	
0.0% FDR (attained)	23 V 🕼 sp Q5UIP0 RIF1_HUMAN Telomere-associated protein sp Q5 2	74 kDa	1	25	• 100%	0.71	Homo sapiens	• • •	0 0	0	3.07E7	2.96E7	i I
986 Targets 0 Decovs		22 L D	1		****	0.000	in the second	•		^	4.0050	C 00F7	-

データ取り込み時の画面

データ取り込み開始

・以下のいずれかの操作を実施

- メニューのFile -> New
- Ctrl + N
- メニューバー下にあるアイコン 🗅 をクリック

Search & Anglesia & Advanced	×
 Search & Analysis & Advanced Please choose a workflow @ Help me choose Search against a FASTA database or existing reference library Create a reference library and search against it 	
Experimental Data Search Parameters	Click to expand \downarrow
	Some required fields are missing
Load Workflow From File Save Workflow As	Load Data Cancel

① workflow:elib作成と連動した2段階検索かそれ以外か

Search a reference library: 直接ライブラリー検索を実施

Create a chromatogram library and search against it : 2段階検索

② ライブラリ、タンパク質配列の指定

直接検索対象とするファイル(elib, dlib, blib, fasta)と、それに 対応する配列データベース(fasta)を選択

③ parameter [ライブラリ検索の時には意味のない設定もあり]

Instrument Type :

推奨パラメーターセットの提案

Fragmentation :

CID/HCD/FTDから選択。考慮するイオンシリーズ

Precursor / Fragment / Library Fragment Tolerance :

理論値と実測スペクトルデータとの許容誤差範囲

Digestion Enzyme:ペプチド切断方法

Peptide Length :検索対象とするペプチドの長さ

Peptide Charge : 検索対象とするペプチドの電荷

Max Missed Cleavages :

理論ペプチド作成の際、切断対象のアミノ酸を何回無視した ペプチドを作成するかの設定

Modifications: 考慮する修飾

④ Peptide FDR Threshold: ペプチドの同定基準値、FDRの値

5 Data Acquisition Type

DIAの測定でのPrecursor Isolation Window タイプについて [次、次々スライドに補足説明図]

- Non-overlapping Windows :

両端のオーバーラップ領域がない

- Overlapping Margins :

両端のオーバーラップ領域がある(値も指定)

- Staggered Windows :

window領域が半分ずつずれた測定を実施

6 Precursor Window Size

DIAの測定Window に対する設定。通常はrawファイルに 書かれた情報をそのまま利用

 $\ensuremath{\mathcal{T}}$ Experimental Data File

検索対象となるrawファイルを選択

Search a reference library		
,		
Create a chromatogram libra	ry and search against it	
ave DIA Files in Choose]	
Experimental Data Se	earch Parameters	Click to collap
xperimental Data Search Parame	eters ✓ 1 Experimental Data Fil	e Add Rem
 Reference Library 	✓ saccharomyces_cerevisiae_prosit_generated_library.dlib	File
 Protein Sequence Database 	✓ saccharomyces_cerevisiae_reviewed_uniprot.fasta 90min_DDA_HEK293_200r	ng_1.raw
iRT Database File:	Choose	-
 Fragmentation 	HCD V Higher-energy collision dissociation	
 Precursor Tolerance 	10 🗘 ppm 🗸	
✓ Fragment Tolerance	10 🗘 ppm 🗸	
 Library Fragment Tolerance 	10 🗘 ppm 🗸	
 Digestion Enzyme 	Trypsin ~	
🗸 Peptide Length	6 - 30 amino acids	
🗸 Peptide Charge	2 - 3	
 Peptide Charge Max Missed Cleavages Modifications These modifications were de Please click the Edit button a 	2 - 3 1 tected in the library and will be used for peptide identification. and edit the modification details for proper annotation. Edit	
 Peptide Charge Max Missed Cleavages Modifications These modifications were de Please click the Edit button a Name Mass Carbamidom 57.021464 	2 - 1 tected in the library and will be used for peptide identification. and edit the modification details for proper annotation. Edit Neutral Loss AA 0 C None Fixed	
 Peptide Charge Max Missed Cleavages Modifications These modifications were de Please click the Edit button at Name Mass Carbamidom 57.021464 Peptide FDR Threshold Data Acquisition Type Non-overlapping Windows Overlapping Margins Staggered Windows 	$\begin{array}{c} 2 & 3 \\ 1 & \hline \end{array}$ tected in the library and will be used for peptide identification. $\begin{array}{c} Edit\\ \hline \\ 0 & C & None & Fixed \end{array}$ $\begin{array}{c} 0 & \hline \end{array}$ $\begin{array}{c} 0 & \hline \end{array}$ $\begin{array}{c} 0 & - \end{array}$	
 Peptide Charge Max Missed Cleavages Modifications These modifications were de Please click the Edit button a Name Mass Carbamidom 57.021464 Veptide FDR Threshold Data Acquisition Type Non-overlapping Windows Overlapping Margins Staggered Windows Precursor Window Size Precursor Window Size 	$\begin{array}{c} 2 & 3 \\ 1 & \end{array}$ tected in the library and will be used for peptide identification. $\begin{array}{c} Edit\\ \hline Edit\\ 0 & C & None & Fixed \end{array}$ $\begin{array}{c} 0 & C & None & Fixed \end{array}$	
 Peptide Charge Max Missed Cleavages Modifications These modifications were de Please click the Edit button a Name Mass Carbamidom 57.021464 Peptide FDR Threshold Data Acquisition Type Non-overlapping Windows Overlapping Margins Staggered Windows Precursor Window Size Determine from raw file Determine from raw file 	$\begin{array}{c} 2 & 3 \\ 1 & 0 \end{array}$ tected in the library and will be used for peptide identification. $\begin{array}{c} Edit\\ \hline \\ 0 & C \end{array}$ $\begin{array}{c} Fixed \end{array}$ $\begin{array}{c} 0 & C \end{array}$ $\begin{array}{c} 0 & C \end{array}$ $\begin{array}{c} 0 & 0 \end{array}$ $\begin{array}{c} 0 & 0 \end{array}$ $\begin{array}{c} 0 & 0 \end{array}$	

補足説明:対応するDIA解析 -- marginあり

Data Acquisition Type	
O Non-overlapping Windows	
Overlapping Margins	Da
Staggered Windows	

Overlapping

24 m/z

24 m/z

24 m/z

補足説明:検索対象 FASTA、BLIB、ELIB(+DLIB)

MÄFKÖTGKTPVEPEVÄ I HR I RI TI. TSRNVKSLEKVCADL I RGAKEKNLKVKGPVRMPTKTLR I TTF OMR I PKRLIDLHSPSE I VKQI TSI SI EPGVEVEVTI ADA

SWIDTARE IDENTIFIED TO THE INTERNATION OF THE TRANSPORT OF THE ADDRESS OF THE ADD

FASTA

• 配列ファイル

*配列から測定条件などを考慮 して計算されたスペクトル データ(DLIB)も使用できる。 BLIB ・ (DDA) マススペクトル ピークリスト ELIB ・ (DIA) RT + m/zのピーク位置 *DLBフォーマットはELIBとほぼ 同じ

補足説明:Prositで作成されたライブラリ、DLIB

Library Creation Parameters

The following parameters were used in the conversion process and thus should match your instrumentation settings. If they vary dramatically from your settings please contact us.

Parameter	Setting
Charge Range	2 - 3
Maximum Missed Cleavages	1
m/z Range	396.4 - 1002.7
Default NCE	33
Default Charge	3

Featured Libraries

Coronavirus reference

Download Coronavirus only DLIB (1.9 MB) Download Coronavirus plus Human (pan human) DLIB (259 MB) Download Coronavirus only FASTA - 13 entries Download Coronavirus plus Human FASTA - 20,350 entries

Available Libraries

Arabidopsis thaliana Download Arabidopsis thaliana DLIB (1.2 GB) Download FASTA file accessed 10/22/19 - 15,896 entries

Caenorhabditis elegans Download Caenorhabditis elegans DLIB (380 MB) Download FA STA file accessed 10/23/19 - 4,089 entries

Danio rerio Download Danio rerio DLIB (250 MB) Download FASTA file accessed 10/22/19 - 3,125 entries

Drosophila melanogaster Download Drosophila melanogaster DLIB (365 MB) Download FASTA file accessed 10/22/19 - 3,586 entries https://support.proteomesoftware.com/hc/enus/articles/360035151172-Prosit-Derived-Spectral-Libraries-for-Scaffold-DIA-Searches

Prosit

・配列からdeep Neural Networkアルゴリズムで 計算された理論スペクトルで、保持時間やintensity も予測

・Proteome Software社側で準備したDLIBを 公開している

・多くのケースでBLIBの代わりになる、手軽に使える 検索対象として利用してください

・Scaffold DIA上にFASTAからprositの インプットファイルを作成するツールあり

補足説明2:FASTAからprositライブラリを作成(4.0)

0

uniprotkb_AND_reviewed_false_A Ready uniprotkb_AND_reviewed_false homo_sapiens_prosit_generated_li Ready homo_sapiens_reviewed_unipr mus_musculus_prosit_generated_l Ready mus_musculus_reviewed_unipr whole-cell_IP_lib.blib Ready Human_Uniprot_Sprt_Trembl_k blibScaffold_predefined.blib Ready uniprot-filtered-organism_Ho humankeratin.dlib Ready uniprot_download_true_format Human.dlib Ready uniprot_human_25apr2019.fast	Name	Status		FASTA			
homo_sapiens_prosit_generated_li Ready homo_sapiens_reviewed_unipr mus_musculus_prosit_generated_l Ready mus_musculus_reviewed_unipr whole-cell_IP_lib.blib Ready Human_Uniprot_Sprt_Trembl_ls blibScaffold_predefined.blib Ready uniprot-filtered-organism_Ho humankeratin.dlib Ready uniprot-download_true_format Human.dlib Ready uniprot_human_25apr2019.fast	uniprotkb_AND_reviewed_false_A	Ready	u	niprotkb_AND_revie	wed_false_A.		
mus_musculus_prosit_generated_I Ready mus_musculus_reviewed_unipn whole-cell_IP_lib.blib Ready Human_Uniprot_Sprt_Trembl_k blibScaffold_predefined.blib Ready uniprot-filtered-organism_Ho humankeratin.dlib Ready uniprot-download_true_format Human.dlib Ready uniprot_human_25apr2019.fast	homo_sapiens_prosit_generated_li	Ready	h	homo_sapiens_reviewed_uniprot.f.			
whole-cell_IP_lib.blib Ready Human_Uniprot_Sprt_Trembl_k blibScaffold_predefined.blib Ready uniprot-filtered-organism_Ho humankeratin.dlib Ready uniprot-download_true_format Human.dlib Ready uniprot_human_25apr2019.fast	mus_musculus_prosit_generated_l	Ready	m	us_musculus_reviev	ved_uniprot		
blibScaffold_predefined.blib Ready uniprot-filtered-organism_Ho humankeratin.dlib Ready uniprot-download_true_format Human.dlib Ready uniprot_human_25apr2019.fast	whole-cell_IP_lib.blib	Ready	н	Human_Uniprot_Sprt_Trembl_Isof			
humankeratin.dlib Ready uniprot-download_true_format Human.dlib Ready uniprot_human_25apr2019.fast	blibScaffold_predefined.blib	Ready	uniprot-filtered-organism_H				
Human.dlib Ready uniprot_human_25apr2019.fast	humankeratin.dlib	Ready	u	uniprot-download_true_format_fa			
	Human.dlib	Ready	u	uniprot_human_25apr2019.fasta			
Add Library Remove Library Create Library Download	Add Library	Remove Library	Create Library	Download	ОК		
			New Prosit I	library			
New Prosit Library		New Chromatogram Library					

Image: Create Prosit Library Perform an *in silico* digest of peptides from your FASTA and create a Prosit library using Koina. • The Library Location field is optional. If blank, library will be generated in the same directory as the FASTA • NCE is the Normalized Collision Energy for Thermo Fusion-class instruments. If you use QEs, add 6 to your NCE. If you use ToFs, use NCE=33. • With DDA, collision energy (CE) is adjusted by the instrument based on charge and m/z, but DIA cannot make this adjustment on a peptide-by-peptide basis. "Adjust NCE for DIA" corrects NCE for DIA acquisition for the lack of CE adjustment • The Default Charge field will be ignored if Adjust NCE for DIA is unchecked • If you use this feature, please cite <u>Searle et al. 2020</u>.

	^
FASTA:	▲ Choose Please select a fasta file
Library Location:	Choose Optional
Digestion Enzyme:	Trypsin V
m/z Range:	396.4 🗘 to 1,002.7 🗘
Charge Range:	2 🗘 to 3 🗘
Default Charge:	3 🗇
Default NCE:	33 🗘
Adjust NCE for	DIA

OK

Cancel

1.(menu) File :open library manager
-> Create Library
-> New Prosit Library

2.(dlib)library作成のためのパラメータを入力し、 "OK" (よくわからなければデフォルト値)

12

 \sim

補足説明:ELIBと「2段階」検索

「pool」データへの検索で ELIBを作成し、そのELIBに 対して元のデータを検索 するプロトコル例

 Sampleから少量集めプール
 100Daなど大きさで分ける
 fasta,blibを使って解析
 解析結果を「ELIB」登録
 元のサンプルの解析開始
 (N回繰り返し実験)
 ④ ④で作ったELIBを使って同 定・定量力アップ

The Combined Workflow

For the highest quality identifications, Scaffold DIA can create a library. A pooled sample is searched with XCorDIA and the resulting ELIB is used to extract and quantify peptides from experimental samples.

Analysisタブ、Advanced タブ、取り込み開始

		🛃 Load Data
		✓ Search ✓ Analysis ✓ Advanced
🕌 Load Data	Analysis	Processing Directory
▲ Search ✓ Analysis ✓ Advanced	$\rightarrow D 10$	Create a subfolder for intermediate files and remove it upon completion
-Shared Evidence Clustering	<u> </u>	Create a subfolder for intermediate files and retain it
Moderate shared evidence clusters		 Write intermediate files directly to this location
Any shared evidence clusters		✓ Minimum Number Of Quant Ions 3
✓ Target Protein FDB 10% FDB ✓		✓ Maximum Number Of Quant Ions 5
✓ Minimum Number of Peptides 2 €		Percolator Training Set Size 500000
		 Percolator Training Set Threshold 0.001
		✓ Filter RT 🗌 – min
		Advanced → P.20
	▲ Some required fields are missing	
Load Workflow From File Save Workflow As	Load Data Cancel	すべての項目を埋めてから「Load
	Ε	Data」ボタンを押す
		Load Data Cancel

ペプチド・タンパク質の定性(同定)

・ペプチド

- encyclopeDIA スコア評価
- peptide FDR 設定値 (percolator も使用)を満たす

タンパク質

- 同定ペプチド N(デフォルト2) 以上アサインされている
- protein FDR 設定値を満たす
- clustering ルールでグループ化

表示される「定量値」 [Display Type]

Display Type:	Exclusive Intensi 🗸 🗌 Normalize	d 🗌 Log Intensities	Color Options
	Exclusive Intensity		
	Total Intensity	alue)	
	Exclusive Intensity (Log ₂ Fold Change)		
	Total Intensity (Log: Fold Change)		<u> </u>
	Exclusive Quantified Peptide Count		pe
	Total Quantified Peptide Count		Nur

Exclusive : ユニークペプチドのみ Total : シェアペプチド含む

・Exclusive/total Intensity ペプチド定量値(フラグメントXICのピーク強度から算出)の和

Exclusive/total Intensity (Log₂ Fold Change)
 ペプチド定量値について、Referenceとの比を取りその数字に対して2を底にするLogに変換

Exclusive/total Quantified Peptide Count タンパク質あるいは表示グループにアサインされたペプチドで、かつ定量に使われたフラグメントを 持つペプチドに限定し数え上げた数(標準化処理も実施)。

 $\rightarrow P.53$

→ P.85

Normalization

GOファイルのセット方法

GO情報のannotation付与方法

1.(menu) Experiment-> Apply Annotations-> Apply all GO annotations

Scaffold DIA - De	mo2_HeLa_ins	ulin_6_files_30_proteins.s	dia														– 🗆 ×
<u>F</u> ile <u>E</u> dit <u>V</u> iew	Experiment	E <u>x</u> port Tools <u>H</u> elp															
1 🖬 🖬 🔒	e o 🖣	Summarization	: Treatment	V 📶 Prot	tein FDR 1.0% FD	R ~	Min # Peptide	s 2 🗘 🕷	0								
Filters																	
Show Hidden	<u>∽</u> + +	Name/Accession	P p-value filt	ter 🔻 GO Term	- O 🕅												
			• • • • • • • • • • • • • • • • • • •		-												
	Display Ty	vpe: Exclusive Intensity	V Normalized Lo	g Intensities	Color Options												
Organize		Color Leg	end (Displayed Value)							Biolo	gical Proce	ss C	Cellular Co	mponent	Molecular .		
orgunizo			6.36E8			ŧ					≿	catio			vitv		
6 C C			1.22E8		ų	Cour				- 5	cess	caliz	_		act		
000			2.33E7	Je l	5 H	<u>e</u>				iji ji	or a		.ē		ty scule		E.
Samples			ケッ・11⁰	っ 斤斤 ナ	- 122+	11			∽" — " ⊓	Ы	1.1.1	. –			ctivit		
			シノハン	ノ目々	い我你	し	に初	「別(ご)	ソ ノル	アノ	リッ	ソ	•	g	g tic ac	_	
	ible	-		~~~		$\cdot \circ$						-	•	oso	uctu	utro	zuli.
	# 55 0	Protein Name		Drat	ainc	· /'	ペネー	したクロ	ーいっク	オン	スレ		-	ę	st ca	8 8	<u>=</u>
	1 🗸	sp P49792 RBP2_HUN	のころ		CIII2		くして	レイレ	ノノノ	9 0	らい	-			00	2.45E8	2.24E8
Proteins	2 🗸	sp P15924 DESP_HUN													0 0) 1.32E8	1.39E8
	3 🗸	sp O43707 ACIN4_H	→次目													6.17E8	5.81E8
	4 ∨ 5 √	spiQ51457[UBR4_HUI	11/2~													0.95E7	4.4958
	6 🗸	spiP18206IVINC HUN	IAN Vinculin OS=Homo sapier	ns splP1 124	4 kDa 1	43	• 100%	0.31	Homo sapiens	0 0	ŏŏ	• •			0 0	6,58E8	5,44E8
Visualize	7 🗸	<pre>sp P12814 ACTN1_HL</pre>	JMAN Alpha-actinin-1 OS=Ho	m sp P1 103	3 kDa 1	43	▲ 63%	0.49	Homo sapiens	0 0 0	0	• (0	1.77E8	1.68E8
-	8 🗸	sp Q9NR30 DDX21_H	UMAN Nucleolar RNA helicas	e 2 sp Q9 87	kDa 1	41	• 100%	0.23	Homo sapiens	•		(•	•	00	5.71E8	5.91E8
, A			MANDING STREET		2 kDa 1	41	• 100%	0.090	Homo sapiens	•		0 (•	•	0	1.22E8	1.04E8
	10 🗸 🛛	Sp Q86UP2 KTN1_HU	MAN Kinectin OS=Homo sapi	en sp Q8 <mark>.</mark> 156	6 kDa 1	41	• 100%	0.18	Homo sapiens			0 (•		0	1.24E8	1.09E8
Analysis				146	6 kDa 1	40	• 100%	0.14	Homo sapiens	• •		-		•	0	2.66E8	2.42E8
Analysis	12 🗸	sp P34932 HSP74_HU	MAN Heat shock 70 kDa prote	ein sp P3 94	kDa 1	38	• 100%	0.65	Homo sapiens			• (0	0	5.61E8	5.55E8
	13 🗸	sp P26639 SYTC_HUN	IAN ThreoninetRNA ligase, c	yt sp P2 83	kDa 1	38	100%	0.51	Homo sapiens			(0	8.78E8	9.20E8
	14 🗸	spiQ14152[EIF3A_HUI	VIAN Eukaryotic translation in:	(II SP Q1 16/	7 KDa 1 9 kDa 1	38	100%	0.83	Homo sapiens							4.83E8	4.82E8
	16 🗸	spiP22102[F012_H01	MAN T-complex protein 1 sub	n	kDa 1	36	100%	0.05	Homo sapiens			•		•		1.20E9	1 27F9
Publish	17 🗸	spiP78371ITCPB HUM	AN T-complex protein 1 subu	ini sp P7 57	kDa 1	35	100%	0.39	Homo sapiens			•	0 0	•	0	7.59E8	8.82E8
Proteins	18 🗸	sp Q04637 IF4G1_HUI	MAN Eukaryotic translation ini	iti sp Q0 175	5 kDa 1	34	• 100%	0.51	Homo sapiens	0 0	•	- (0	•	0	4.85E8	4.79E8
0.0% FDR (attained)	19 🗸	sp P14625 ENPL_HUN	/AN Endoplasmin OS=Homo :	sa sp P1 92	kDa 1	34	• 100%	0.89	Homo sapiens	• •		•	• • •	•	0	1.19E9	1.17E9
29 Targets	20 🗸	sp P08729 K2C7_HUN	IAN Keratin, type II cytoskeleta	al sp P0 51	kDa 1	33	• 100%	0.61	Homo sapiens			(0 0	0	0	2.17E9	2.18E9
0 Decoys	21 🗸	☆ sp P00558 PGK1_HUN	/IAN Phosphoglycerate kinase	1 sp P0 45	kDa 1	30	• 100%	0.52	Homo sapiens	• •	•	(• • •		•	4.58E9	4.82E9
Peptides	22 🗸	sp P06733 ENOA_HU	MAN Alpha-enolase OS=Hom	o sp P0 47	kDa 1	30	0100%	0.13	Homo sapiens	• •		(00	•	00	7.42E9	1.01E10
0.0% FDR (attained) 986 Targets	23 🗸	sp Q5UIP0 RIF1_HUM	AN Telomere-associated prote	ein sp Q5 274	4 kDa 1	25	• 100%	0.71	Homo sapiens	• •	0	(0	•	0	3.07E7	2.96E7
0 Decoys		Concinice Area 1111		100 100				0.000				- '			_	4 0000	

Proteins 画面

i inters

V Show Hidden	Name/Acces	ssian ,	Pp-value filter ▼ GC) Term 🔻 🔍 🔛				
Organize	Protein Similar Proteins Showing All Peptides ···	sp Q5T4S7 UBR4_HU	JMAN		$\rightarrow (1)$)/2z=	ライド 2() ,
Samples	Quantifi Peptide Sequer AAPPPPPPP AEHASSLLELA ALGTLGMTTN APSYIEIFGR	nce PLESSPR STTK EK	Quantified Mat Fixed M 0 of 6 0 of 6 0 of 6 0 of 6 0 of 6	lodifications Variable Modific	ati Start Stop 606 622 1065 1079 4803 4814 2364 2373	Protein Accessi sp Q5T4S7 UBR4 sp Q5T4S7 UBR4 sp Q5T4S7 UBR4 sp Q5T4S7 UBR4	Proba Mass 86% 1,702.904 100% 1,556.805 同定ペプチ	・ド ・ド
Proteins	Sequence AEHASSLLELASTTK	Modifications Cha	2 of 6 arge Sample 2 Control_1	Quant. Intensity #Qu	1929 1957 1a RT Start (min) –	RT Center (min)	1000 1 459 757 RT Stop (min) Precur - 779.410	2
Visualize	AEHASSLLELASTTK AEHASSLLELASTTK AEHASSLLELASTTK		2 Control_2 2 Control_3 2 Insulin_1	- 0 - 0 - 0	-	-	- 779410 同定スペクト	
Analysis	Protein Sequence Protein sp Q5T4S7 UBR4_HUMAN	Level Charts Chrom E3 ubiquitin-protein li	atograms Fragment Intensi gase UBR4 OS=Homo sapie	ties Fragmentation Table	\rightarrow	(3) Z=	ライド 21	•
Publish	Q H N L L <mark>H F S S D</mark>	. S P P F G A V P H P	W A S G S Q D <mark>R</mark> F Y C V L S	SNS RRAT [.] PEA SEDDI	NRLDS	VACDVI	_ F S K L 96	3
Proteins 0.0% FDR (attained) 29 Targets 0 Decoys Peptides	V K Y D E Y Y F L I 756 out of 5183 (14.59%) ai	ELYAAL LWRIL mino acids identified w	TALLAAG GILPPSK vith 23 modifications	SQL DTVRF <mark>TYI NQLSI</mark>	RKENKN MNSPEM	SECDII	^{A C A} 関連グラ - H T L R 1040	
0.0% FDR (attained) 1002 Targets 0 Decoys								

→ P.58

→ P.59

-	Quantified	eptide Sequence	Quantified Matches Fixed Modif	Variable Mo	Start	Stop	Protein Accessi	Proba	Mass	ŧ
1		AAPPPPPPPPLESSPR	0 of 6		606	622	sp Q5T4S7 UBR4	86%	1,702.904	*
		AEHASSLLELASTTK	0 of 6		1065	1079	sp Q5T4S7 UBR4	100%	1,556.805	=
司定ペ	プチド	ALGTLGMTTNEK	0 of 6		4803	4814	sp Q5T4S7 UBR4	99%	1,234.623	
		APSYIEIFGR	0 of 6		2364	2373	sp Q5T4S7 UBR4	98%	1,151.598	
		ADDALSELHTVER			1000	1050	losticaluppi	1000	1 452.757	
		Quantified							485.677	
		宁島計省に庙田 -	トカス冬性(一定物い上)	カコーグ、	x-11	のねら	リカン)を法	<i>t</i> =1.	320.342	
				ハノノノノ	~~			120	321.247	Ŧ
		タンバク質の定量	計算に使用されている	かどうか。	o					
		手動でチェックを	外すと定量計算から外;	<h><h><h><h><h><h><h><h><h><h><h><h><h><</h></h></h></h></h></h></h></h></h></h></h></h></h>						
		Quantified M	atches							
		全サンプルに対し	て定量計算に使用され	たサンプ	ルがし	いつ	あるのか			

(2)	Sequence		Modifications	Charge	Sample	Quant. Intensity	#Qua	RT Start (min)	RT Center (min)	RT Stop (min)	Precursor MZ	Attribute
		SALQYDTLISLMEHL····		3	Control_1	2.72E5	5	68.91	69.16	69.36	874.455	control
问定人へ	シトル	SALQYDTLISLMEHL····		3	Control_2	-	0	68.55	-	69.32	874.455	control
	ASVVTASSO	GSALQYDTLISLMEHL…		3	Control 3	4.455E5	5	68.65	68.89	69.13	874.455	control
	ASVVTASSO	GSALQYDTLISLMEHL…		3	Control 2	18F5	5	68 97	69.21	69.41	874.455	insulin
		Quant. In 定量計算に和 # of Quar 定量計算に和 RT Start, 該当ペプチド	tensity 可用したこ nt. frag 可用したこ RT Cen を検出し	フラグ men フラグ ter, 定量	メント t メント RT St 計算に	ピーク強度 ピーク数 <mark>top</mark> 〔利用したF	の和 RTの閉	乳始から終	冬了までの	時間		

Visualize 画面

有意な変動をしている タンパク質の解析& データのバラつきを はじめとした確からしさ を検証するグラフを 提供

Volcano plot 縦軸 $-Log_{10}(p)$ 横軸 Log_2 (Fold Change) 赤点線 多重検定検証の p(q, α)

変動タンパク質をratio, p-value両面から探す

y=x や回帰直線から大きく外れる タンパク質を探す

Visualize 画面 PCAタブ

→ P.79

Analysis 画面

TICとLC保持時間の サンプル間誤差を確認 できる

Publish 画面

検索パラメータの確認、 論文のMethodのような 文章の作成

Search	م م				
Search					
Search Library	demo2.elib				
Processing Directory	¥work .				
Protein Sequence Database	uniprot-swissprot-human.fasta				
Perform RT alignment between referen	ic€false				
Fragmentation	CID				
Precursor Tolerance	10.0 ppm				
Fragment Tolerance	10.0 ppm				
Library Fragment Tolerance	10.0 ppm				
Peptide FDR Threshold	0.01				
Data Acquisition Type	Overlapping DIA				
Digestion Enzyme	Trypsin				
Peptide Length	[630]				
Peptide Charge	[2•• 3]				
Max Missed Cleavages	1				
Modifications	Carbamidomethylation C 57.0214635 Non-termin				
Analysis					
Shared Evidence Clustering	Perfect				
Target Protein FDR	0.01				
Minimum Number of Peptides	2				
- Grouping Applied in Version	1.0.0				
Thresholding Applied in Version	1.0.0				
Clustering Applied in Version	10.0 パニマーク― 監				
Quantify on Exclusive Peptides	true ハノハーソー見				
Advanced					
Precursor Window Size	Deduced from file				
- Minimum Number of Quant Ions	3				
Maximum Number of Quant Ions	5				
Version					
Scaffold DIA	1.0.0				
Encyclopedia	0.6.12				
ProteoWizard	3.0.11748				
Percolator	3.01 nightly-13-655e4c7-dirty				

Experiment Methods | SQL Report

 $\hat{\sim}$

-

ANALYSIS OVERVIEW

DIA data were analyzed using Scaffold DIA (1.0.0).

RAW DATA PROCESSING

Raw data files were converted to mzML format using ProteoWizard (3.0.11748). Deconvolution of overlapping windows was performed.

SPECTRAL LIBRARY SEARCH

Analytic samples were aligned based on retention times and individually searched against *demo2.elib* with a peptide mass tolerance of 10.0 ppm and a fragment mass tolerance of 10.0 ppm. Fixed modifications considered were: Carbamidomethylation C. The digestion enzyme was assumed to be Trypsin with a maximum of 1 missed cleavage site(s) allowed. Only peptides with charges in the range $[2 \cdot \cdot 3]$ and length in the range $[6 \cdot \cdot 30]$ were considered. Peptides identified in each sample were filtered by Percolator (3.01. nightly-13-655e4c7-dirty) to achieve a maximum FDR of 0.01. Individual search results were combined and peptide identifications were assigned posterior error probabilities and filtered to an FDR threshold of 0.01 by Percolator (3.01.nightly-13-655e4c7-dirty).

QUANTIFICATION

Peptide quantification was performed by Encyclopedia (0.6.12). For each peptide, the 5 highest quality fragment ions were selected for quantitation. Only peptides exclusive to each protein or cluster were used for quantification.

CRITERIA FOR PROTEIN IDENTIFICATION

Proteins that contained similar peptides and could not be differentiated based on MS/MS analysis were grouped to satisfy the principles of parsimony. Proteins with a minimum of 2 identified peptides were thresholded to achieve a protein FDR threshold of 1.0%.

GO ANNOTATION

Proteins were annotated with GO terms from: UniProt, InterPro, GO_Central, Reactome, GOC, HPA, Ensembl, IntAct, ParkinsonsUK-UCL, NTNU_SB, LIFEdb, FlyBase, BHF-UCL, HGNC, MGI, SYSCILIA_CCNET, CACAO, AgBase, PINC, ARUK-UCL, CAFA, MTBBASE, Alzheimers_University_of_Toronto, WormBase, GDB, SynGO-UCL, DFLAT, SGD, dictyBase and SynGO

CITATIONS

Method文章

ProteoWizard

A cross-platform toolkit for mass spectrometry and proteomics. Chambers, M.C., MacLean, B., Burke, R., Amode, D., Ruderman, D.L., Neumann, S., Gatto, L., Fischer, B., Pratt, B., Egertson, J., Hoff, K., Kessner, D., Tasman, N., Shulman, N., Frewen, B., Baker, T.A., Brusniak, M.-Y., Paulse, C., Creasy, D., Flashner, L., Kani, K., Moulding, C., Seymour, S.L., Nuwaysir, L.M., Lefebvre, B., Kuhlmann, F., Roark, J., Rainer, P., Detlev, S., Hemenway, T., Huhmer, A., Langridge, J., Connolly, B., Chadlick, T., Holly, K., Eckels, J., Deutsch, E.W., Moritz, R.L., Katz, J.E., Agus, D.B., MacCoss, M., Tabb, D.L. & Mallick, P. Nature Biotechnology 30, 918-920 (2012) [http://www.nature.com/hbt/journal/v30/n10/full/nbt.2377.html]

X Export Publish Report

Percolator

Semi-supervised learning for peptide identification from shotgun proteomics datasets

Copy Text to Clipboard

🕙 Export Supplementary Data

定量:階層構造化と属性付与の例

→ P.42

			Denne Catego
File Edit View	Experiment Export Help		🕞 Impo
Filters	Summarization: MS Sample		
✓ Show Hidden	☆★★★ Name/Accession P p-value filter Q		T
	Define Categories	Group Samples By Sev	WildType
Organize	Add Category	 F001908 F001909 F001910 F001911 	Cat1
Samples	1 Organiza 画面	 F001912 F001913 F001914 	
Proteins	1.Organize 画面	F001915 F001916	
			Define Cate
			i
		·	
	Define Categories		Cat1
	📻 Import Attributes File	X Export Attributes File	WT
	Add Category	🔽 Delete Cat1	
	WildType 🔲 🕂 Add Attribute		
	Cat1		
	2 Add Category		
	-> Category (階層)(り作成	

→ P.85

検定

	 Permutation Test - ノンパラメトリック - 2群 O 3群以上 O - ベースはF検定、群間のランダムなデータを入れ替え F値を計算し続ける
Statistical Test	- 10000回の 入れ替え計算を行い、入れ替え前のF値より 有意差以上に差があった回数を10000
○ ANOVA / t-test P ≥2 Background×Concentrations	(データ入れ替えの試行回数)で割った値をp-value とする。
○ Permutation Test NP ≥2 Background×Concentrations	
Mann-Whitney U Test NP Exactly 2 Background×Concentrations	- パラメトリック
○ Kruskal-Wallis Test NP ≥2 Background×Concentrations	- 2群 〇 3群以上 〇
None	- ANOVA両側検定を行う。(2群しかない場合 t検定と同じ。)
	Mann Whiteney U test / Kruskal-Wallis test

- ノンパラメトリック
- 2群→Mann Whiteney U, 3群以上→Kruskal-Wallis
- 同じ分布の形、スケールである事を前提とする

Multiple Test Correction

Control FWER with Hochberg's step-up and Holm's step-down

Control FDR with standard Benjamini-Hochberg procedure

Control FWER with Hochberg's step-up and Holm's step-down

No correction

多重検定時の第一種過誤に対応する補正

FDR: (False Discovery Rate) BH法

FWER: Family Wise Error Rate ホッホベルクのステップアップ手順&ホルムの ステップダウン

解析操作の流れ

- •ソフトウェア起動
- 新規作成、Ctrl + N
 (menuの「File」-> New やアイコンクリック)
- ・検索パラメータ指定、検索開始
- ・データ取り込み完了
- •属性付与、階層構造化
- ・データ解析(定性解析、定量解析、検定)
- •レポート

内部プログラム

- MSConvert
 - データ変換
- EncyclopeDIA
 - ペプチドピックアップ
 - RTアライメント
 - ペプチド同定
 - タンパク質同定
 - ペプチド定量

その他のトピックス(+日本語マニュアル対応ページ)

Report (→P.91)

Scaffold DIAで出力可能なファイル

・Prositとの連携によるライブラリフリーサーチ (→P.93)

[旧バージョン,3.4.1以下] Prositでライブラリーを作成し Scaffold で使用可能にするための 操作方法

英語マニュアルのAppendix

- Appendix A.Structure of Scaffold DIA files (*.sdia)
- Appendix B.Computation of FDR in Scaffold DIA
- Appendix C. Summarization:Rolling up Values
- Appendix D. Missing Values
- Appendix E. Shared Evidence Clustering Algorithm
- Appendix F.Heat map clustering
- Appendix G.Techniques to Control the Family-wise Error Rate
- Appendix H. Using Principal Component Analysis
- Appendix I. How PCA is Performed in Scaffold DIA
- Appendix J. Description of Mouse Right Click Context Menu Commands

インストール環境、その他

■インストール環境

・対応OS

Windows 10,11 (64bit)。MacやLinux利用の場合、mzMLを自身で準備

・<mark>メモリ</mark> 最低 4GB以上 しかし64GB以上を強く推奨(大規模解析なら128GB以上)

・<mark>ストレージ</mark> 最低 数百 MB 以上。高速SSD の使用を推奨

・<mark>CPU</mark> 使用可能なコア数の上限が 64コア